Skip to main content

Nutrient Regulation of Cancer Cells by O-GlcNAcylation

  • Chapter
  • First Online:
Glycosignals in Cancer: Mechanisms of Malignant Phenotypes
  • 786 Accesses

Abstract

O-linked β-N-acetylglucosamine (O-GlcNAc) is a ubiquitous and dynamic posttranslational modification that occurs on serine/threonine residues of nuclear and cytoplasmic proteins. This modification is regulated by O-GlcNAc transferase (OGT), which attaches O-GlcNAc to proteins and O-GlcNAcase (OGA), which removes O-GlcNAc. O-GlcNAc serves as a nutrient sensor to regulate virtually all cellular processes, as well as playing roles in various diseases, including Alzheimer’s disease, diabetes, and cancer. In this chapter, we present an overview of O-GlcNAcylation in different kinds of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto Y, Hart GW, Hirano H, Kawakami H (2005) O-GlcNAc modification of nucleocytoplasmic proteins and diabetes. Med Mol Morphol 38(2):84–91

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Miura K, Higai K, Matsumoto K (2007) Protein O-N-acetylglucosaminylation modulates promoter activities of cyclic AMP response element and activator protein 1 and enhances E-selectin expression on HuH-7 human hepatoma cells. Biol Pharm Bull 30(12):2284–2289

    Article  CAS  PubMed  Google Scholar 

  • Banerjee PS, Hart GW, Cho JW (2013a) Chemical approaches to study O-GlcNAcylation. Chem Soc Rev 42(10):4345–4357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee S, Sangwan V, McGinn O, Chugh R, Dudeja V, Vickers SM, Saluja AK (2013b) Triptolide-induced cell death in Pancreatic cancer is mediated by O-GlcNAc modification of transcription factor sp1. J Biol Chem 288(47):33927–33938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butkinaree C, Cheung WD, Park S, Park K, Barber M, Hart GW (2008) Characterization of beta-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis. J Biol Chem 283(35):23557–23566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, Vosseller K, Reginato MJ (2010) Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29(19):2831–2842

    Article  CAS  PubMed  Google Scholar 

  • Chambers AF, Naumov GN, Varghese HJ, Nadkarni KV, MacDonald IC, Groom AC (2001) Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 10(2):243–255, vii

    CAS  PubMed  Google Scholar 

  • Champattanachai V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoenwattanasatien R, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J (2013) Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics 13(14):2088–2099

    Article  CAS  PubMed  Google Scholar 

  • Chou TY, Dang CV, Hart GW (1995) Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci USA 92(10):4417–4421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung S, Kang DO, Yamzon J, Warburton D, Koh CJ (2010) O-GlcNAc mediated glycosylation down-regulation in mice with cyclophosphamide induced cystitis. J Urol 183(1):351–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chunthapong J, Seftor EA, Khalkhali-Ellis Z, Seftor RE, Amir S, Lubaroff DM, Heidger PM Jr, Hendrix MJ (2004) Dual roles of E-cadherin in prostate cancer invasion. J Cell Biochem 91(4):649–661

    Article  CAS  PubMed  Google Scholar 

  • Comer FI, Hart GW (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem 275(38):29179–29182

    Article  CAS  PubMed  Google Scholar 

  • Comtesse N, Maldener E, Meese E (2001) Identification of a nuclear variant of MGEA5, a cytoplasmic hyaluronidase and a beta-N-acetylglucosaminidase. Biochem Biophys Res Commun 283(3):634–640

    Article  CAS  PubMed  Google Scholar 

  • Dias WB, Hart GW (2007) O-GlcNAc modification in diabetes and Alzheimer’s disease. Mol Biosyst 3(11):766–772

    Article  CAS  PubMed  Google Scholar 

  • Donadio AC, Lobo C, Tosina M, de la Rosa V, Martin-Rufian M, Campos-Sandoval JA, Mates JM, Marquez J, Alonso FJ, Segura JA (2008) Antisense glutaminase inhibition modifies the O-GlcNAc pattern and flux through the hexosamine pathway in breast cancer cells. J Cell Biochem 103(3):800–811

    Article  CAS  PubMed  Google Scholar 

  • Dong DL, Hart GW (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J Biol Chem 269(30):19321–19330

    CAS  PubMed  Google Scholar 

  • Dorfmueller HC, Borodkin VS, Blair DE, Pathak S, Navratilova I, van Aalten DM (2011) Substrate and product analogues as human O-GlcNAc transferase inhibitors. Amino Acids 40(3):781–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drougat L, Olivier-Van Stichelen S, Mortuaire M, Foulquier F, Lacoste AS, Michalski JC, Lefebvre T, Vercoutter-Edouart AS (2012) Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochim Biophys Acta 1820(12):1839–1848

    Article  CAS  PubMed  Google Scholar 

  • Fardini Y, Dehennaut V, Lefebvre T, Issad T (2013) O-GlcNAcylation: a new cancer hallmark? Front Endocrinol (Lausanne) 4:99

    Google Scholar 

  • Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276(13):9838–9845

    Article  CAS  PubMed  Google Scholar 

  • Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ (2011) Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol 7(3):174–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goebl M, Yanagida M (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 16(5):173–177

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C, Yang J, Han F, Lu X, Yu W (2010) GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res 70(15):6344–6351

    Article  CAS  PubMed  Google Scholar 

  • Guo K, Gan L, Zhang S, Cui FJ, Cun W, Li Y, Kang NX, Gao MD, Liu KY (2012) Translocation of HSP27 into liver cancer cell nucleus may be associated with phosphorylation and O-GlcNAc glycosylation. Oncol Rep 28(2):494–500

    CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Holt GD, Hart GW (1990) Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J Biol Chem 265(5):2563–2568

    CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Blomberg MA, Hart GW (1992) Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem 267(13):9005–9013

    CAS  PubMed  Google Scholar 

  • Hanover JA, Lai Z, Lee G, Lubas WA, Sato SM (1999) Elevated O-linked N-acetylglucosamine metabolism in pancreatic beta-cells. Arch Biochem Biophys 362(1):38–45

    Article  CAS  PubMed  Google Scholar 

  • Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 66:315–335

    Article  CAS  PubMed  Google Scholar 

  • Haucke V, Horst M, Schatz G, Lithgow T (1996) The Mas20p and Mas70p subunits of the protein import receptor of yeast mitochondria interact via the tetratricopeptide repeat motif in Mas20p: evidence for a single hetero-oligomeric receptor. EMBO J 15(6):1231–1237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hirano T, Kinoshita N, Morikawa K, Yanagida M (1990) Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60(2):319–328

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Pan Q, Sun D, Chen W, Shen A, Huang M, Ding J, Geng M (2013) O-GlcNAcylation of cofilin promotes breast cancer cell invasion. J Biol Chem 288(51):36418–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V, Svindland A, Schlomm T, Mills IG (2013) O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res 73(16):5277–5287

    Article  CAS  PubMed  Google Scholar 

  • Jiang MS, Hart GW (1997) A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine. J Biol Chem 272(4):2421–2428

    Article  CAS  PubMed  Google Scholar 

  • Jin FZ, Yu C, Zhao DZ, Wu MJ, Yang Z (2013) A correlation between altered O-GlcNAcylation, migration and with changes in E-cadherin levels in ovarian cancer cells. Exp Cell Res 319(10):1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Kang ES, Han D, Park J, Kwak TK, Oh MA, Lee SA, Choi S, Park ZY, Kim Y, Lee JW (2008) O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic beta cells. Exp Cell Res 314(11–12):2238–2248

    Article  CAS  PubMed  Google Scholar 

  • Kanwal S, Fardini Y, Pagesy P, N’Tumba-Byn T, Pierre-Eugene C, Masson E, Hampe C, Issad T (2013) O-GlcNAcylation-inducing treatments inhibit estrogen receptor alpha expression and confer resistance to 4-OH-Tamoxifen in human breast cancer-derived MCF-7 cells. PLoS One 8(7):e69150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konrad RJ, Kudlow JE (2002) The role of O-linked protein glycosylation in beta-cell dysfunction. Int J Mol Med 10(5):535–539

    CAS  PubMed  Google Scholar 

  • Kreppel LK, Hart GW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 274(45):32015–32022

    Article  CAS  PubMed  Google Scholar 

  • Krzeslak A, Forma E, Bernaciak M, Romanowicz H, Brys M (2012a) Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clin Exp Med 12(1):61–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krzeslak A, Wojcik-Krowiranda K, Forma E, Bienkiewicz A, Brys M (2012b) Expression of genes encoding for enzymes associated with O-GlcNAcylation in endometrial carcinomas: clinicopathologic correlations. Ginekol Pol 83(1):22–26

    PubMed  Google Scholar 

  • Lamb JR, Michaud WA, Sikorski RS, Hieter PA (1994) Cdc16p, Cdc23p and Cdc27p form a complex essential for mitosis. EMBO J 13(18):4321–4328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469(7331):564–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lazarus MB, Jiang J, Kapuria V, Bhuiyan T, Janetzko J, Zandberg WF, Vocadlo DJ, Herr W, Walker S (2013) HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science 342(6163):1235–1239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lefebvre T, Caillet-Boudin ML, Buee L, Delacourte A, Michalski JC (2003) O-GlcNAc glycosylation and neurological disorders. Adv Exp Med Biol 535:189–202

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zeng Y, Mooney SM, Yin B, Mizokami A, Namiki M, Getzenberg RH (2011) Resistance to paclitaxel increases the sensitivity to other microenvironmental stresses in prostate cancer cells. J Cell Biochem 112(8):2125–2137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lim K, Chang HI (2010) O-GlcNAc inhibits interaction between Sp1 and sterol regulatory element binding protein 2. Biochem Biophys Res Commun 393(2):314–318

    Article  CAS  PubMed  Google Scholar 

  • Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. J Cell Sci 116(Pt 4):647–654

    Article  CAS  PubMed  Google Scholar 

  • Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 275(15):10983–10988

    Article  CAS  PubMed  Google Scholar 

  • Lubas WA, Frank DW, Krause M, Hanover JA (1997) O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 272(14):9316–9324

    Article  CAS  PubMed  Google Scholar 

  • Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ (2012) Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem 287(14):11070–11081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma Z, Vosseller K (2013) O-GlcNAc in cancer biology. Amino Acids 45(4):719–733

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Vocadlo DJ, Vosseller K (2013) Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappaB activity in pancreatic cancer cells. J Biol Chem 288(21):15121–15130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ozcan S, Andrali SS, Cantrell JE (2010) Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta 1799(5–6):353–364

    Article  PubMed Central  PubMed  Google Scholar 

  • Park J, Kwon H, Kang Y, Kim Y (2007) Proteomic analysis of O-GlcNAc modifications derived from streptozotocin and glucosamine induced beta-cell apoptosis. J Biochem Mol Biol 40(6):1058–1068

    Article  CAS  PubMed  Google Scholar 

  • Rameau G, Puglia K, Crowe A, Sethy I, Willis I (1994) A mutation in the second largest subunit of TFIIIC increases a rate-limiting step in transcription by RNA polymerase III. Mol Cell Biol 14(1):822–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rozanski W, Krzeslak A, Forma E, Brys M, Blewniewski M, Wozniak P, Lipinski M (2012) Prediction of bladder cancer based on urinary content of MGEA5 and OGT mRNA level. Clin Lab 58(5–6):579–583

    CAS  PubMed  Google Scholar 

  • Schultz J, Marshall-Carlson L, Carlson M (1990) The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of Saccharomyces cerevisiae. Mol Cell Biol 10(9):4744–4756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shafi R, Iyer SP, Ellies LG, O’Donnell N, Marek KW, Chui D, Hart GW, Marth JD (2000) The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci USA 97(11):5735–5739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaw P, Freeman J, Bovey R, Iggo R (1996) Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene 12(4):921–930

    CAS  PubMed  Google Scholar 

  • Shen DL, Gloster TM, Yuzwa SA, Vocadlo DJ (2012) Insights into O-linked N-acetylglucosamine ([0–9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. J Biol Chem 287(19):15395–15408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi Y, Tomic J, Wen F, Shaha S, Bahlo A, Harrison R, Dennis JW, Williams R, Gross BJ, Walker S, Zuccolo J, Deans JP, Hart GW, Spaner DE (2010) Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia 24(9):1588–1598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11(9):678–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slawson C, Pidala J, Potter R (2001) Increased N-acetyl-beta-glucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins. Biochim Biophys Acta 1537(2):147–157

    Article  CAS  PubMed  Google Scholar 

  • Slawson C, Copeland RJ, Hart GW (2010) O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 35(10):547–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  CAS  PubMed  Google Scholar 

  • Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259(5):3308–3317

    CAS  PubMed  Google Scholar 

  • Tugendreich S, Tomkiel J, Earnshaw W, Hieter P (1995) CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81(2):261–268

    Article  CAS  PubMed  Google Scholar 

  • Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9(7):821–831

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1956a) On respiratory impairment in cancer cells. Science 124(3215):269–270

    CAS  PubMed  Google Scholar 

  • Warburg O (1956b) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  • Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291(5512):2376–2378

    Article  CAS  PubMed  Google Scholar 

  • Wells L, Gao Y, Mahoney JA, Vosseller K, Chen C, Rosen A, Hart GW (2002) Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase. J Biol Chem 277(3):1755–1761

    Article  PubMed  Google Scholar 

  • Whelan SA, Hart GW (2003) Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation. Circ Res 93(11):1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Yehezkel G, Cohen L, Kliger A, Manor E, Khalaila I (2012) O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) in primary and metastatic colorectal cancer clones and effect of N-acetyl-beta-D-glucosaminidase silencing on cell phenotype and transcriptome. J Biol Chem 287(34):28755–28769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu Q, Zhou L, Yang Z, Lai M, Xie H, Wu L, Xing C, Zhang F, Zheng S (2012) O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation. Med Oncol 29(2):985–993

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Hart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Liu, X., Hart, G.W. (2016). Nutrient Regulation of Cancer Cells by O-GlcNAcylation. In: Furukawa, K., Fukuda, M. (eds) Glycosignals in Cancer: Mechanisms of Malignant Phenotypes . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55939-9_6

Download citation

Publish with us

Policies and ethics