Skip to main content

Part of the book series: SpringerBriefs in Statistics ((JSSRES))

  • 601 Accesses

Abstract

This chapter introduces the A-hypergeometric system of linear partial differential equations. It presents the known results of the A-hypergeometric system with a two-row matrix A and explains its relationship with integer partitions. The A-hypergeometric distribution is a class of discrete exponential families whose normalization constant is the A-hypergeometric polynomial. The A-hypergeometric distribution emerges in multinomial sampling of log-affine models and is conditional on sufficient statistics. After presenting the properties of the A-hypergeometric distribution, the chapter discusses the maximum likelihood estimation of the A-hypergeometric distribution of the two-row matrix A. Especially, using the properties of partition polytopes, it proves the nonexistence theorem of the maximum likelihood estimator. Finally, it introduces holonomic gradient methods (HGMs), which numerically solve holonomic systems without combinatorial enumeration, and applies a difference HGM to the A-hypergeometric polynomials of a two-row matrix A.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saito, M., Sturmfels, B., Takayama, N.: Gröbner Deformations of Hypergeometric Differential Equations. Springer, Berlin (2010)

    MATH  Google Scholar 

  2. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Notes, vol. 8. American Mathematical Socitey, Providence (1996)

    Google Scholar 

  3. Cox, D., Little, L., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007)

    Book  Google Scholar 

  4. Hibi, T. (ed.): Gröbner Bases: Statistics and Software Systems. Springer, Tokyo (2013)

    MATH  Google Scholar 

  5. Pistone, G., Riccomagno, E., Wynn, H.P.: Algebraic Statistics. Computational Commutative Algebra in Statistics. Chapman & Hall, Boca Raton (2000)

    Book  Google Scholar 

  6. Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  7. Aoki, S., Hara, H., Takemura, A.: Markov Bases in Algebraic Statistics. Springer, New York (2012)

    Book  Google Scholar 

  8. Gel’fand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Generalized Euler Integrals and \(A\)-hypergeometric functions. Adv. Math. 84, 255–271 (1990)

    Article  MathSciNet  Google Scholar 

  9. Forsyth, A.R.: A Treatise on Differential Equations, 6th edn. Macmillan, New York (1956)

    Google Scholar 

  10. Mano, S.: Partition structure and the \(A\)-hypergeometric distribution associated with the rational normal curve. Electron. J. Stat. 11, 4452–4487 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cattani, E., D’Andrea, C., Dickenstein, A.: Rational solutions of the A-hypergeometric system associated with a monomial curve. Duke Math. J. 99, 179–207 (1999)

    Article  MathSciNet  Google Scholar 

  12. Hartshorne, R. Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  13. Comtet, L.: Advanced Combinatorics. Ridel, Dordrecht (1974)

    Book  Google Scholar 

  14. Strumfels, B., and Takayama, N.: Gröbner bases and hypergeometric functions. In: Buchberger, B., Winkler, F. (eds.) Gröbner bases and Applications, Proceedings of Conference 33 Years of Gröbner bases. London Mathematical Society Lecture Note Series, vol. 251, pp. 246–258. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  15. Takayama, N., Kuriki, S., Takemura, A.: \(A\)-hypergeometric distributions and Newton polytopes. Adv. Appl. Math. 99, 109–133 (2018)

    Article  MathSciNet  Google Scholar 

  16. Brown, L.D.: Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory. Institute of Mathematical Statistics, Hayward (1986)

    MATH  Google Scholar 

  17. Barndorff-Nielsen, O.E.: Information and Exponential Families in Statistical Theory. Wiley, Chichester (2014)

    Book  Google Scholar 

  18. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypothesis, 3rd edn. Springer, New York (2005)

    MATH  Google Scholar 

  19. Aomoto, K., Kita, M.: Theory of Hypergeometric Functions. Springer, New York (2011)

    Book  Google Scholar 

  20. Saito, M., Sturmfels, B., Takayama, N.: Hypergeometric polynomials and integer programming. Compos. Math. 115, 185–204 (1999)

    Article  MathSciNet  Google Scholar 

  21. Drton, M., Sullivant, S.: Algebraic statistical models. Stat. Sinica 17, 1273–1297 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Keener, R., Rothman, E., Starr, N.: Distribution of partitions. Ann. Stat. 15, 1466–1481 (1978)

    Article  MathSciNet  Google Scholar 

  23. Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  24. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann. Math. Stat. 43, 1470–1480 (1972)

    Article  MathSciNet  Google Scholar 

  25. Ogawa, M.: Algebraic statistical methods for conditional inference of discrete statistical models. Dissertation, University of Tokyo, Tokyo (2015)

    Google Scholar 

  26. Shlyk, V.A.: Polytopes of partitions of numbers. Eur. J. Comb. 26, 1139–1153 (2005)

    Article  MathSciNet  Google Scholar 

  27. Takayama, N.: References for the Holonomic Gradient Method (HGM) and the Holonomic Gradient Descent Method (HGD). http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html

  28. Nakayama, H., Nishiyama, K., Noro, M., Ohara, K., Sei, T., Takayama, N., Takemura, A.: Holonomic gradient descent and its application to the Fisher-Bingham integral. Adv. Appl. Math. 47, 639–658 (2011)

    Article  MathSciNet  Google Scholar 

  29. Ohara, K., Takayama, N.: Pfaffian systems of \(A\)-hypergeometric systems II–holonomic gradient method. arXiv: 1505.02947

  30. Goto, Y., Matsumoto, K.: Pfaffian equations and contiguity relations of the hypergeometric function of type \((k+1,k+n+2)\) and their applications. arXiv: 1602.01637. to appear in Funkcial. Ekvac

  31. Risa/Asir (Kobe distribution) Download Page. http://www.math.kobe-u.ac.jp/Asir/asir.html

  32. Tachibana, Y., Takayama, N.: Private communication

    Google Scholar 

  33. Matsumoto, K.: Monodoromy and Pfaffian of Lauricella’s \(F_D\) in terms of the intersection forms of twisted (co)homology groups. Kyushu J. Math. 67, 367–387 (2013)

    Article  MathSciNet  Google Scholar 

  34. Goto, Y.: Contiguity relations of Lauricella’s \(F_D\) revisited. Tohoku Math. J. 69, 287–304 (2017)

    Article  MathSciNet  Google Scholar 

  35. Goto, Y., Tachibana, Y., Takayama, N.: Implementation of difference holonomic gradient methods for two-way contingency table. Computer Algebra and Related Topics. RIMS Kôkyûroku 2054, 11 (2016) in Japanese

    Google Scholar 

  36. Tachibana, Y., Goto, Y., Koyama, T., Takayama, N.: Holonomic gradient method for two way contingency tables (2018). arXiv: 1602.01637

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhei Mano .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mano, S. (2018). A-Hypergeometric Systems. In: Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics. SpringerBriefs in Statistics(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-55888-0_3

Download citation

Publish with us

Policies and ethics