• Shuhei ManoEmail author
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)


Partitions appear in various statistical problems. Moreover, stochastic modeling of partitions naturally assumes the exchangeability. This chapter introduces this monograph by providing minimum definitions and terminologies related to partitions and exchangeability. To illustrate the content of this monograph, we present two simple statistical problems involving partitions.


A-hypergeometric distribution Algebraic statistics Bayesian nonparametrics Dirichlet process Exchangeability Partition 


  1. 1.
    Sibuya, M.: A random-clustering process. Ann. Inst. Statist. Math. 45, 459–465 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aldous, D.J.: Exchangeability and related topics. In: Ecole d’Été de Probabilités de Saint Flour, Lecture Notes in Mathematics, vol. 1117. Springer, Berlin (1985)Google Scholar
  3. 3.
    Pitman, J.: Combinatorial Stochastic Processes. Ecole d’Été de Probabilités de Saint Flour, Lecture Notes in Math. vol. 1875. Springer, Berlin (2006)Google Scholar
  4. 4.
    Kingman, J.F.C.: The representation of partition structures. J. Lond. Math. Soc. 18, 374–380 (1978)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lo, A.Y.: On a class of Bayesian nonparametric estimates: I. density estimates. Ann. Statist. 12, 351–357 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Griffin, J., Holmes, C.: Computational issues arising in Bayesian nonparametric hierarchical models. In: Hjort, N.L., Holmes, C., Müller, P., Walker, S.G. (eds.) Bayesian Nonparametrics, pp. 208–222. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  7. 7.
    De Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré Probab. Statist. 7, 1–68 (1937)zbMATHGoogle Scholar
  8. 8.
    Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209–230 (1973)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Diaconis, P., Eisenbud, B., Sturmfels, B.: Lattice walks and primary decomposition. In: Sagan, B.E., Stanley, R.P. (eds.) Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996). Progress in Mathematics, vol. 161, pp. 173–193. Birkhäuser, Boston (1998)CrossRefGoogle Scholar
  10. 10.
    Charalambides, C.A.: Combinatorial Methods in Discrete Distributions. Wiley, New Jersey (2005)CrossRefGoogle Scholar
  11. 11.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  12. 12.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.): Markov Chain Monte Carlo in Practice. Chapman Hall, Boca Raton (1996)zbMATHGoogle Scholar
  13. 13.
    Takayama, N., Kuriki, S., Takemura, A.: \(A\)-hypergeometric distributions and Newton polytopes. Adv. in Appl. Math. 99, 109–133 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mano, S.: Partition structure and the \(A\)-hypergeometric distribution associated with the rational normal curve. Electron. J. Stat. 11, 4452–4487 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and \(A\)-hypergeometric functions. Adv. in Math. 84, 255–271 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.The Institute of Statistical MathematicsTachikawaJapan

Personalised recommendations