Skip to main content

A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration

  • Conference paper
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 112 ))

Abstract

We present a multi agent collaboration algorithm to recruit an approximate number of individually simple robots with controllable variance. We propose a sigmoid response threshold function motivated by task allocation in social insects, and describe macro-level models backed by micro-level simulations to predict the resulting team sizes and their variance. These results are further validated through physical experiments using the “Droplet” swarm robotics platform. We show that the slope of the response threshold function can be used to control the variance of group size, allowing agents to trade off deterministic team size with coordination speed, and making the proposed mechanism applicable to a variety of applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amstutz, P., Correll, N., Martinoli, A.: Distributed boundary coverage with a team of networked miniature robots using a robust market-based algorithm. Ann. Math. Artif. Intell. 52(2–4), 307–333 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beni, G.: From swarm intelligence to swarm robotics. In: Swarm Robotics, pp. 1–9. Springer (2005)

    Google Scholar 

  3. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Robots and Biological Systems: Towards a New Bionics?, pp. 703–712. Springer (1993)

    Google Scholar 

  4. Berman, S., Halász, Á., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allocation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)

    Article  Google Scholar 

  5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence, From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  6. Box, G.E.P., Hunter, W.G., Hunter, J.S., et al.: Statistics for Experimenters. Wiley, New York (1978)

    MATH  Google Scholar 

  7. Chen, J., Sun, D.: Resource constrained multirobot task allocation based on leader-follower coalition methodology. Int. J. Robot. Res. 30(12), 1423–1434 (2011)

    Article  Google Scholar 

  8. Correll, N.: Parameter estimation and optimal control of swarm-robotic systems: a case study in distributed task allocation. In: IEEE International Conference on Robotics and Automation (ICRA) (2008)

    Google Scholar 

  9. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a swarm of miniature robots. Int. J. Robot. Res. 30(5), 615–626 (2011)

    Article  Google Scholar 

  10. Dantu, K., Berman, S., Kate, B., Nagpal, R.: A comparison of deterministic and stochastic approaches for allocating spatially dependent tasks in micro-aerial vehicle collectives. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 793–800 (2012)

    Google Scholar 

  11. Farrow, N., Klingner, J., Reishus, D., Correll, N.: Miniature six-channel range and bearing system: algorithm, analysis and experimental validation. In: IEEE International Conference on Robotics and Automation (ICRA), Hong Kong (2014)

    Google Scholar 

  12. Feller, W.: On the normal approximation to the binomial distribution. Ann. Math. Stat. 16(4), 319–329 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  14. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(403), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  15. Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Correll, N.: A stick-slip omnidirectional drive-train for low-cost swarm robotics: mechanism, calibration, and control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014)

    Google Scholar 

  16. Krieger, M.J.B., Billeter, J.-B., Keller, L.: Ant-like task allocation and recruitment in cooperative robots. Nature 406(6799), 992–995 (2000)

    Article  Google Scholar 

  17. Krishnanand, K.N., Amruth, P., Guruprasad, M.H., Bidargaddi, S.V., Ghose, D.: Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 958–963. IEEE (2006)

    Google Scholar 

  18. Lerman, K., Galstyan, A., Martinoli, A., Ijspeert, A.: A macroscopic analytical model of collaboration in distributed robotic systems. Artif. Life 7, 93–375 (2001)

    Article  Google Scholar 

  19. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a case study in collaborative distributed manipulation. Int. J. Robot. Res. 23, 415–436 (2004)

    Article  Google Scholar 

  20. Martinoli, A., Mondada, F., Collective and cooperative group behaviours: biologically inspired experiments in robotics. In: Proceedings of the Fourth International Symposium on Experimental Robotics, pp. 3–10. Springer (1995)

    Google Scholar 

  21. Mather, T.W., Hsieh, M.A., Frazzoli, E.: Towards dynamic team formation for robot ensembles. In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 4970–4975. IEEE (2010)

    Google Scholar 

  22. Sugawara, K., Correll, N., Reishus, D.: Object transportation by granular convection using swarm robots. In: Distributed and Autonomous Robotic Systems (DARS) (2012)

    Google Scholar 

  23. Vig, L., Adams, J.A.: Coalition formation: from software agents to robots. J. Intell. Robot. Syst. 50(1), 85–118 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by NSF grant #1150223. We are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshul Kanakia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this paper

Cite this paper

Kanakia, A., Klingner, J., Correll, N. (2016). A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration. In: Chong, NY., Cho, YJ. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 112 . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55879-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55879-8_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55877-4

  • Online ISBN: 978-4-431-55879-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics