Advertisement

Perceptual Illusion and Development of a Sense-Centered Human Interface

  • Yasuharu KoikeEmail author
Chapter

Abstract

Tele-existence is the replication of physically plausible information through the provision of real sensation of presence. Here, we sought to elucidate the mechanisms of perceptual illusion within the context of brain function. Improving our understanding of perceptual illusion will contribute to the realization of new and more efficient human interfaces.

Keywords

Musculo-skeletal model Stiffness Equilibrium position Pseudo-Haptics Electromyogram 

Notes

Acknowledgments

This research was supported by CREST Creation of Human-Harmonized Information Technology for Convivial Society. I thank my colleagues, Dr. Kumiyo Nakakoji, Dr. Masahiro Ishii, and Dr. Kenji Kawashima, for providing invaluable insight and expertise.

References

  1. 1.
    R.K. Eric, J.H. Schwartz, T.M. Jessell, Principles of Neural Science, vol. 4 (2000)Google Scholar
  2. 2.
    J. MacDonald, H. McGurk, Visual influences on speech perception processes. Percept. Psychophys. 24(3), 253–257 (1978)CrossRefGoogle Scholar
  3. 3.
    A. Lécuyer, Simulating haptic feedback using vision: a survey of research and applications of pseudo-haptic feedback. Presence: Teleoperators Virtual Environ. 18(1), 39–53 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Lécuyer, S. Coquillart, A. Kheddar, P. Richard, P. Coiffet, Pseudo-haptic feedback: can isometric input devices simulate force feedback? in Proceedings IEEE Virtual Reality 2000 (Cat. No.00CB37048) (2000)Google Scholar
  5. 5.
    E. Bizzi, A. Polit, P. Morasso, Mechanisms underlying achievement of final head position. J. Neurophysiol. 39(2), 435–444 (1976)Google Scholar
  6. 6.
    E. Bizzi, N. Accornero, W. Chapple, N. Hogan, Arm trajectory formation in monkeys. Experimental brain research. Experimentelle Hirnforschung. Experimentation Cerebrale 46(1), 139–143 (1982)Google Scholar
  7. 7.
    M. Ishii, S. Sato, Pseudo-Haptics in three-dimensional space. ITE Trans. Media Technol. Appl. 66(6), J188–J191 (2012)Google Scholar
  8. 8.
    Y. Koike, K. Jaehyo, D. Shin, Role of stiffness in weight perception. Jap. Psychol. Res. 48(3), 174–187 (2006)CrossRefGoogle Scholar
  9. 9.
    H. Kambara, D. Shin, T. Kawase, N. Yoshimura, K. Akahane, M. Sato, Y. Koike, The effect of temporal perception on weight perception. Frontiers Psychol. 4(FEB), 1–14 (2013)Google Scholar
  10. 10.
    F. Lacquaniti, C. Maioli, The role of preparation in tuning anticipatory and reflex responses during catching. J. Neurosci. Official J. Soc. Neurosci. 9(1), 134–148 (1989)Google Scholar
  11. 11.
    M. Zago, G. Bosco, V. Maffei, M. Iosa, Y.P. Ivanenko, F. Lacquaniti, Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions. J. Neurophysiol. 91(4), 1620–1634 (2004)Google Scholar
  12. 12.
    S. Hong, J. Kim, M. Sato, Y. Koike, A research of human s time-to-contact prediction model for ball catching task. (7), 1246–1256 (2005)Google Scholar
  13. 13.
    H. Kambara, K. Ohishi, Y. Koike, Learning strategy in time-to-contact estimation of falling objects. J. Adv. Comput. Intell. Intell. Inf. 15(8), 972–979 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Kawase, H. Kambara, Y. Koike, A power assist device based on joint equilibrium point estimation from EMG signals. J. Robot. Mechatron. 24(1), 205–218 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Eisenberg, L. Shmuelof, E. Vaadia, E. Zohary, Functional organization of human motor cortex: directional selectivity for movement. J. Neurosci. Official J. Soc. Neurosci. 30(26), 8897–8905 (2010)CrossRefGoogle Scholar
  16. 16.
    C.M. Toxopeus, B.M. de Jong, G. Valsan, B.A. Conway, K.L. Leenders, N.M. Maurits, Direction of movement is encoded in the human primary motor cortex. PLoS ONE 6(11), (2011)Google Scholar
  17. 17.
    S. Kakei, D.S. Hoffman, P.L. Strick, Direction of action is represented in the ventral premotor cortex. Nat. Neurosci. 4(10), 1020–1025 (2001)CrossRefGoogle Scholar
  18. 18.
    R.P. Dum, P.L. Strick, Motor areas in the frontal lobe of the primate. Physiol. Behav. 77(4–5), 677–682 (2002)CrossRefGoogle Scholar
  19. 19.
    F. Lacquaniti, Visuo-motor transformations for arm reaching. Eur. J. Neurosci. 10(1), 195–203 (1998)CrossRefGoogle Scholar
  20. 20.
    N. Picard, P.L. Strick, Imaging the Premotor Areas (2001)Google Scholar
  21. 21.
    G. Rizzolatti, G. Luppino, M. Matelli, The Organization of the Cortical Motor System: New Concepts (1998)Google Scholar
  22. 22.
    J. Duque, L. Labruna, S. Verset, E. Olivier, R.B. Ivry, Dissociating the Role of Prefrontal and Premotor Cortices in Controlling Inhibitory Mechanisms during Motor Preparation (2012)Google Scholar
  23. 23.
    T. Hanakawa, M.A. Dimyan, M. Hallett, Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb. Cortex 18(12), 2775–2788 (2008)CrossRefGoogle Scholar
  24. 24.
    W. Stadler, D.V.M. Ott, A. Springer, R.I. Schubotz, S. Schütz-Bosbach, W. Prinz, Repetitive TMS Suggests a Role of the Human Dorsal Premotor Cortex in Action Prediction (2012)Google Scholar
  25. 25.
    K. Nakakoji, TCieX : an environment for designing and experiencing a variety of visuo-haptic sensory conflicts, in Proceedings of the 3rd IEEE VR2011 Workshop on PIVE 2011, number Pive (2011), pp. 23–26Google Scholar
  26. 26.
    K. Tadano, K. Kawashima, Development of a MasterSlave System with Force-Sensing Abilities using Pneumatic Actuators for Laparoscopic Surgery (2010)Google Scholar
  27. 27.
    H. Li, K. Kawashima, K. Tadano, S. Ganguly, S. Nakano, Achieving haptic perception in forceps manipulator using pneumatic artificial muscle. IEEE/ASME Trans. Mechatron. 18(1), 74–85 (2013)CrossRefGoogle Scholar
  28. 28.
    Yu. Okamoto, K. Tadano, T. K. Kawashima, K. Words, A basic study on biological signal of master-salve system operator. J. Robot. Mechatron. 24(5), 908–916 (2012)Google Scholar
  29. 29.
    K. Zintus-art, D. Shin, N. Yoshimura, H. Kambara, Advanced mobile security system operated by bioelectrical sensor. 8(4), 139–150 (2014)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Solution Research LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations