Critical Roles of Implicit Interpersonal Information in Communication

  • Makio KashinoEmail author
  • Shinsuke Shimojo
  • Katsumi Watanabe


Recent studies of cognitive science have convincingly demonstrated that human behavior, decision making and emotion depend heavily on “implicit mind,” that is, automatic, involuntary mental processes even the person herself/himself is not aware of. Such implicit processes may interact between partners, producing a kind of “resonance,” in which two or more bodies and brains, coupled via sensorimotor systems, act nearly as a single system. The basic concept of this project is that such “implicit interpersonal information (IIPI)” provides the basis for smooth and effective communication. We have been developing new methods to decode IIPI from brain activities, physiological responses, and body movements, and to control IIPI by sensorimotor stimulation and non-invasive brain stimulation. Here, we detail on two topics from the project, namely, interpersonal synchronization of involuntary body movements as IIPI, and autism as an impairment of IIPI. The findings of the project would provide guidelines for developing human-harmonized information systems.


Implicit interpersonal information (IIPI) Interpersonal synchronization Body movement Hyperscanning electroencephalogram (EEG) Eye movement Pupil diameter Autonomic nervous system Oxytocin Autism spectrum disorder Sensorimotor specificity 


  1. 1.
    M. Kashino, M. Yoneya, H.-I. Liao, S. Furukawa, Reading the implicit mind from the body. NTT Tech. Rev. 12(11) (2014)Google Scholar
  2. 2.
    A.R. Damasio, The Feeling of What Happens: Body and Emotion in the Making of Consciousness (Mariner Books, 2000)Google Scholar
  3. 3.
    D. Kahneman, Thinking (Fast and Slow, Farrar, Straus and Giroux, 2011)Google Scholar
  4. 4.
    M. Yoneya, H.-I. Liao, S. Kidani, S. Furukawa, M. Kashino. Sounds in sequence modulate dynamic characteristics of microsaccades. Association for Research in Otolaryngology MidWinter Meeting (2014)Google Scholar
  5. 5.
    H.-I. Liao, S. Kidani, M. Yoneya, M. Kashino, S. Furukawa. Correspondences among pupillary dilation response, subjective salience of sounds, and loudness. Psychonomic Bulletin and Review (in press)Google Scholar
  6. 6.
    S. Yoshimoto, H. Imai, M. Kashino, T. Takeuchi, Pupil response and the subliminal mere exposure effect. PLoS One 9(2), e90670 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Ooishi, H. Mukai, K. Watanabe, S. Kawato, M. Kashino. The effect of the tempo of music on the secretion of steroid and peptide hormones into human saliva. The 35th Annual Meeting of the Japan Neuroscience Society (2012)Google Scholar
  8. 8.
    S. Baron-Cohen, A.M. Leslie, U. Frith, Does the autistic child have a ‘theory of mind’? Cognition 21(1), 37–46 (1985)CrossRefGoogle Scholar
  9. 9.
    C. Keysers, V. Gazzola, Integrating simulation and theory of mind: from self to social cognition. Trends Cogn. Sci. 11, 194–196 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Takamuku, H. Gomi, in 34th European Conference on Visual Perception. Background visual motion reduces pseudo-haptic sensation caused by delayed visual feedback during letter writing (2011)Google Scholar
  11. 11.
    V.S. Chib, K. Yun, H. Takahashi, S. Shimojo, Noninvasive remote activation of the ventral midbrain by transcranial direct current stimulation of prefrontal cortex. Transl. Psychiatry 3, e268,44, (2013)Google Scholar
  12. 12.
    Y. Takano, T. Yokawa, A. Masuda, J. Niimi, S. Tanaka, N. Hironaka, A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI. Neurosci. Lett. 491, 40–43 (2011)CrossRefGoogle Scholar
  13. 13.
    T. Tanaka, Y. Takano, S. Tanaka, N. Hironaka, T. Hanakawa, K. Watanabe, M. Honda, Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Frontiers Syst. Neurosci. 7(6) (2013)Google Scholar
  14. 14.
    K. Yun, K. Watanabe, S. Shimojo, Interpersonal body and neural synchronization as a marker of implicit social interaction. Sci. Rep. 2, 959 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. Takano, M. Ukezono, An experimental task to examine the mirror system in rats. Sci. Rep. 4, 6652 (2014)CrossRefGoogle Scholar
  16. 16.
    G. Rizzolatti, L. Craighero, The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  17. 17.
    F.J. Bernieri, R. Rosenthal, Fundamentals of Nonverbal Behavior. (Cambridge University Press, Cambridge, 1991)Google Scholar
  18. 18.
    J.K. Burgoon, L. A. Stern, L. Dillman, Interpersonal adaptation: dyadic interaction patterns (Cambridge University Press, Cambridge, 1995)Google Scholar
  19. 19.
    R. Schmidt, M. Richardson. Coordination: Neural, behavioral and social dynamics. (Springer, New York, 2008)Google Scholar
  20. 20.
    Z. Neda, E. Ravasz, Y. Brechet, T. Vicsek, A.L. Barabasi, Self-organizing processes: the sound of many hands clapping. Nature 403, 849–850 (2000)CrossRefGoogle Scholar
  21. 21.
    M.J. Hove, J.L. Risen, It’s all in the timing: Interpersonal synchrony increases affiliation. Soc. Cogn. 27, 949–961 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Kirschner, M. Tomasello, Joint drumming: social context facilitates synchronization in preschool children. J. Exp. Child Psychol. 102, 299–314 (2009)CrossRefGoogle Scholar
  23. 23.
    A.R. Damasio, Descartes’ Error: Emotion, reason, and the human brain. (Grosset/Putnam, 1994)Google Scholar
  24. 24.
    U. Bronfenbrenner, The ecology of human development: Experiments by nature and design (Harvard University Press, Cambridge, 1979)Google Scholar
  25. 25.
    J. Decety, C. Lamm, The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist 13, 580–593 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Iacoboni, M.D. Lieberman, B.J. Knowlton, I. Molnar-Szakacs, M. Moritz, C.J. Throop, A.P. Fiske, Watching social interactions produces dorsomedial prefrontal and medial parietal BOLD fMRI signal increases compared to a resting baseline. NeuroImage 21, 1167–1173 (2004)CrossRefGoogle Scholar
  27. 27.
    G.G. Knyazev, J.Y. Slobodskoj-Plusnin, A.V. Bocharov, Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience 164, 1588–1600 (2009)CrossRefGoogle Scholar
  28. 28.
    G. Dumas, J. Nadel, B. Soussignan, J. Martinerie, L. Garnero, Inter-brain synchronization during social interaction. PLoS One 5, e12166 (2010)CrossRefGoogle Scholar
  29. 29.
    E. Tognoli, J. Lagarde, G.C. DeGuzman, J.A. Kelso, The phi complex as a neuromarker of human social coordination. Proc. Natl Acad. Sci. 104, 8190 (2007)CrossRefGoogle Scholar
  30. 30.
    B. King-Casas, D. Tomlin, C. Anen, C.F. Camerer, S.R. Quartz, P.R. Montague, Getting to know you: reputation and trust in a two-person economic exchange. Science 308, 78–83 (2005)CrossRefGoogle Scholar
  31. 31.
    P.R. Montague, G.S. Berns, J.D. Cohen, S.M. McClure, G. Pagnoni, M. Dhamala, M.C. Wiest, I. Karpov, R.D. King, N. Apple, R.E. Fisher, Hyperscanning: simultaneous fMRI during linked social interactions. Neuroimage 16(4), 1159–1164 (2002)CrossRefGoogle Scholar
  32. 32.
    F. de Vico Fallani, V. Nicosia, R. Sinatra, L. Astolfi, F. Cincotti, D. Mattia, C. Wilke, A. Doud, V. Latora, B. He, F. Babiloni. Defecting or Not Defecting: How to “Read” Human Behavior during Cooperative Games by EEG Measurements. PLoS One 5, e14187 (2010)Google Scholar
  33. 33.
    K. Yun, D. Chung, J. Jeong, in Proceedings of the 6th International Conference on Cognitive Science. Emotional Interactions in Human Decision Making using EEG Hyperscanning, pp. 327–330 (2008)Google Scholar
  34. 34.
    U. Lindenberger, S.C. Li, W. Gruber, V. Müller, Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neurosci. 10, 22 (2009)CrossRefGoogle Scholar
  35. 35.
    G. Pfurtscheller, F.H. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)CrossRefGoogle Scholar
  36. 36.
    S.L. Bressler, J.A.S. Kelso, Cortical coordination dynamics and cognition. Trends Cognitive Sci. 5, 26–36 (2001)CrossRefGoogle Scholar
  37. 37.
    P. Fries, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005)CrossRefGoogle Scholar
  38. 38.
    K. Watanabe, M.O. Abe, K. Takahashi, S. Shimojo. Short-term active interactions enhance implicit behavioral mirroring. Soc. Neurosci. 832(20) (2011)Google Scholar
  39. 39.
    M.R. Leary, Social anxiousness: the construct and its measurement. J. Pers. Assess. 47, 66–75 (1983)CrossRefGoogle Scholar
  40. 40.
    T.L. Chartrand, J.A. Bargh, The chameleon effect: the perception-behavior link and social interaction. J. Pers. Soc. Psychol. 76, 893–910 (1999)CrossRefGoogle Scholar
  41. 41.
    L. Noy, E. Dekel, U. Alon, The mirror game as a paradigm for studying the dynamics of two people improvising motion together. Proc. Natl Acad. Sci. 108, 20947–20952 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Kashino, S. Furukawa, T. Nakano, S. Washizawa, S. Yamagishi, A. Ochi, A. Nagaike, S. Kitazawa, N. Kato, in Association for Research in Otolaryngology MidWinter Meeting. Specific deficits of basic auditory processing in high-functioning pervasive developmental disorders (2013)Google Scholar
  43. 43.
    H.E. Gockel, R.P. Carlyon, A. Mehta, C.J. Plack, The frequency following response (FFR) may reflect pitch-bearing information but is not a direct representation of pitch. J. Assoc. Res. Otolaryngol. 12(6), 767–782 (2011)CrossRefGoogle Scholar
  44. 44.
    Y.E. Cohen, E.I. Knudsen, Maps versus clusters: different representations of auditory space in the midbrain and forebrain. Trends Neurosci. 22(3), 128–135 (1999)CrossRefGoogle Scholar
  45. 45.
    R.J. Kulesza Jr, R. Lukose, L.V. Stevens, Malformation of the human superior olive in autistic spectrum disorders. Brain Res. 1367, 360–371 (2011)CrossRefGoogle Scholar
  46. 46.
    I.-F. Lin, T. Yamada, Y. Komine, N. Kato, M. Kashino, The absence of automatic grouping processes in individuals with autism spectrum disorder. Sci. Rep. 22(5), 10524 (2015)Google Scholar
  47. 47.
    B.C. Moore, H.E. Gockel, Properties of auditory stream formation. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 367(1591), 919–931 (2012)CrossRefGoogle Scholar
  48. 48.
    E. Shimojo, D.-A. Wu, S. Shimojo, Don’t look at the mouth, but then where? – Orthogonal task reveals latent eye avoidance behavior in subjects with high Autism Quotient scores. Annual Meeting of the Vision Sciences Society (2012)Google Scholar
  49. 49.
    E. Shimojo, D.-A. Wu, S. Shimojo, Don’t look at the face—social inhibition task reveals latent avoidance of social stimuli in gaze orientation in subjects with high Autism Quotient scores. Annual Meeting of the Vision Sciences Society (2013)Google Scholar
  50. 50.
    C. Wang, E. Shimojo, D.-A. Wu, S. Shimojo, Don’t look at the mouth, but then where?—Orthogonal task reveals latent eye avoidance behavior in subjects with diagnosed ASDs: a movie version. J. Vision 14(10), 682 (2014)CrossRefGoogle Scholar
  51. 51.
    C. Saegusa, J. Intoy, S. Shimojo, Visual attractiveness is leaky: the asymmetrical relationship between face and hair. Frontiers Psychol. 6, 377 (2015)Google Scholar
  52. 52.
    Y. Ooishi, M. Kobayashi, N. Kitagawa, K. Ueno, S. Ise, M. Kashino. Effects of speakers’ unconscious subtle movemens on listener’s autonomic nerve activity, The 37th Annual Meeting of the Japan Neuroscience Society (2014)Google Scholar
  53. 53.
    K. Watanabe, Teaching as a dynamic phenomenon with interpersonal interactions. Mind, Brain and Education 7(2), 91–100 (2013)CrossRefGoogle Scholar
  54. 54.
    M. Polanyi, The Tacit Dimension (University of Chicago Press, Chicago, 1966)Google Scholar
  55. 55.
    J. Decety, J.A. Sommerville, Shared representations between self and other: a social cognitive neuroscience view. Trends Cogn. Sci. 7(12), 527–533 (2003)CrossRefGoogle Scholar
  56. 56.
    G. Knoblich, N. Sebanz, The social nature of perception and action. Curr. Dir. Psychol. Sci. 15(3), 99–104 (2006)CrossRefGoogle Scholar
  57. 57.
    I. Konvalnika, A. Roepstroff, The two-brain approach: how can mutually interacting brains teach us something about social interaction? Frontiers Hum. Neurosci. 6(215), 1–9 (2012)Google Scholar
  58. 58.
    N. Sebanz, H. Bekkering, G. Knoblich, Joint action: bodies and minds moving together. Trends Cogn. Sci. 10(2), 70–76 (2006)CrossRefGoogle Scholar
  59. 59.
    S. Tsukada, H. Nakashima, K. Torimitsu, Conductive polymer combined silk fiber bundle for bioelectrical signal recording. PLoS One 7(4), e33689 (2012)CrossRefGoogle Scholar
  60. 60.
    G. Deleuze, F. Guattari, A Thousand Plateaus. Minuit, 1980. (English translation: University of Minnesota Press, 1987)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Makio Kashino
    • 1
    Email author
  • Shinsuke Shimojo
    • 2
  • Katsumi Watanabe
    • 3
  1. 1.NTT Communication Science Laboratories, NTT CorporationKanagawaJapan
  2. 2.California Institute of TechnologyCaliforniaUSA
  3. 3.Waseda UniversityTokyoJapan

Personalised recommendations