Skip to main content

Graft Selection

  • 2439 Accesses

Abstract

Requirements for an ideal graft substitute in ACL reconstruction surgery are proper biomechanical strength, sufficient size, reliable fixation, rapid biological healing, no biologically adverse reaction, no donor-site morbidity, and excellent long-term outcomes. Although many types of graft have been used in a history of ACL reconstruction, it is still a question under never-ending debate as to what is the best graft. Surgeons have to understand that every type of graft available today has advantages and disadvantages. Factors in the patient side, such as age, sex, physique, activity, lifestyle, and preference, are also the issues which affect the graft selection. In most case, autologous graft is the first choice for primary reconstruction. The popular autografts are hamstring tendon graft, which is applicable for multi-bundle reconstruction and has less donor-site morbidity, and bone-patellar tendon-bone graft which has lower risk of revision surgery. Since harvest technique is another factor to affect surgical outcomes, surgeons should be acquainted with anatomy and harvesting procedures of each graft.

Keywords

  • Auto graft
  • Hamstring tendon
  • Bone-patellar tendon-bone

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hey Grove EW (1917) Operation for the repair of the cruciate ligament. Lancet 2:674–675

    CrossRef  Google Scholar 

  2. Macey HB (1939) A new operative procedure for repair of ruptured cruciate ligaments of the knee joint. Surg Gynecol Obstet 69:108–109

    Google Scholar 

  3. Campbell WC (1939) Reconstruction of the ligaments of the knee. Am J Surg 43:473–480

    CrossRef  Google Scholar 

  4. Jones KG (1963) Reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 45:925–932

    CAS  PubMed  Google Scholar 

  5. Clancy WG Jr (1983) Anterior cruciate ligament functional instability: a static intra-articular and dynamic extra-articular procedure. Clin Orthop Relat Res 172:102–106

    PubMed  Google Scholar 

  6. Zaricznyj B (1983) Reconstruction of the anterior cruciate ligament using free tendon graft. Am J Sports Med 11:164–176

    CrossRef  CAS  PubMed  Google Scholar 

  7. Wilk RM, Richmond JC (1993) Dacron ligament reconstruction for chronic anterior cruciate ligament insufficiency. Am J Sports Med 21:374–379

    CrossRef  CAS  PubMed  Google Scholar 

  8. Maletius W, Gillquist J (1997) Long-term results of anterior cruciate ligament reconstruction with a Dacron prosthesis. The frequency of osteoarthritis after seven to eleven years. Am J Sports Med 25:288–293

    CrossRef  CAS  PubMed  Google Scholar 

  9. Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K (1984) Replacement of the anterior cruciate ligament by an allogenic tendon graft: an experimental study in the dog. J Bone Joint Surg (Br) 66:672–681

    CAS  Google Scholar 

  10. Shino K, Kimura T, Hirose H, Inoue M, Ono K (1986) Reconstruction of the anterior cruciate ligament by allogeneic tendon graft: an operation for chronic ligamentous insufficiency. J Bone Joint Surg (Br) 68:739–746

    CAS  Google Scholar 

  11. Cohen SB, Yucha DT, Ciccotti MC, Goldstein DT, Ciccotti MA, Ciccotti MG (2009) Factors affecting patient selection of graft type in anterior cruciate ligament reconstruction. Arthroscopy 25:1006–1010

    CrossRef  Google Scholar 

  12. Cheung SC, Allen CR, Gallo RA, Ma CB, Feeley BT (2012) Patients’ attitudes and factors in their selection of grafts for anterior cruciate ligament reconstruction. Knee 19:49–54

    CrossRef  PubMed  Google Scholar 

  13. Woo SL, Hollis JM, Adam DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effect of specimen age and orientation. Am J Sports Med 19:217–225

    CrossRef  CAS  PubMed  Google Scholar 

  14. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    CAS  PubMed  Google Scholar 

  15. Cooper DE (1998) Biomechanical properties of the central third patellar tendon graft: effect of rotation. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S16–S19

    CrossRef  Google Scholar 

  16. Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557

    CAS  PubMed  Google Scholar 

  17. Slone HS, Romine SE, Premkumar A, Xerogeanes JW (2015) Quadriceps tendon autograft for anterior cruciate ligament reconstruction: a comprehensive review of current literature and systematic review of clinical results. Arthroscopy 31:541–554

    CrossRef  PubMed  Google Scholar 

  18. Haut Donahue TL, Howell SM, Hull ML, Gregersen C (2002) A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy 18:589–597

    CrossRef  PubMed  Google Scholar 

  19. Śmigielski R, Zdanowicz U, Drwięga M, Ciszek B, Ciszkowska-Łysoń B, Siebold R (2015) Ribbon like appearance of the midsubstance fibers of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 23:3143–3150

    CrossRef  PubMed  Google Scholar 

  20. Sonnery-Cottet B, Chambat P (2006) Anatomic double bundle: a new concept in anterior cruciate ligament reconstruction using the quadriceps tendon. Arthroscopy 22:1249.e1–1249.e4

    CrossRef  Google Scholar 

  21. Suijkerbuijk MA, Reijman M, Lodewijks SJ, Punt J, Meuffels DE (2015) Hamstring tendon regeneration after harvesting: a systematic review. Am J Sports Med 43:2591–2598

    CrossRef  PubMed  Google Scholar 

  22. Papalia R, Franceschi F, D’Adamio S, Balzani LD, Maffulli N, Denaro V (2015) Hamstring tendon regeneration after harvest for anterior cruciate ligament reconstruction: a systematic review. Arthroscopy 31:1169–1183

    CrossRef  PubMed  Google Scholar 

  23. Leis HT, Sanders TG, Larsen KM, Lancaster-Weiss KJ, Miller MD (2003) Hamstring regrowth following harvesting for ACL reconstruction: the lizard tail phenomenon. J Knee Surg 16:159–164

    PubMed  Google Scholar 

  24. Conte EJ, Hyatt AE, Gatt CJ Jr, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30:882–890

    CrossRef  Google Scholar 

  25. Treme G, Diduch DR, Billante MJ, Miller MD, Hart JM (2008) Hamstring graft size prediction: a prospective clinical evaluation. Am J Sports Med 36:2204–2209

    CrossRef  PubMed  Google Scholar 

  26. Xie G, Huangfu X, Zhao J (2012) Prediction of the graft size of 4-stranded semitendinosus tendon and 4-stranded gracilis tendon for anterior cruciate ligament reconstruction: a Chinese Han patient study. Am J Sports Med 40:1161–1166

    CrossRef  PubMed  Google Scholar 

  27. Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17:461–476

    CrossRef  CAS  PubMed  Google Scholar 

  28. Ishibashi Y, Toh S, Okamura Y, Sasaki T, Kusumi T (2001) Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. Am J Sports Med 29:473–479

    CAS  PubMed  Google Scholar 

  29. Goradia VK, Rochat MC, Kida M, Grana WA (2000) Natural history of a hamstring tendon autograft used for anterior cruciate ligament reconstruction in a sheep model. Am J Sports Med 28:40–46

    CrossRef  CAS  PubMed  Google Scholar 

  30. Ballock RT, Woo SLY, Lyon RM, Hollis JM, Akeson WH (1989) Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: a long-term histologic and biomechanical study. J Orthop Res 7:474–485

    CrossRef  CAS  PubMed  Google Scholar 

  31. Fu SC, Cheuk YC, Yung SH, Rolf CG, Chan KM (2014) Systematic review of biological modulation of healing in anterior cruciate ligament reconstruction. Orthop J Sports Med 2:2325967114526687

    CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Caborn DN, Urban WP Jr, Johnson DL, Nyland J, Pienkowski D (1997) Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 13:229–232

    CrossRef  CAS  PubMed  Google Scholar 

  33. Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M (1997) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 31:174–181

    Google Scholar 

  34. Petre BM, Smith SD, Jansson KS, de Meijer PP, Hackett TR, LaPrade RF, Wijdicks CA (2013) Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med 41:416–422

    CrossRef  PubMed  Google Scholar 

  35. Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M (1997) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 31:182–188

    Google Scholar 

  36. Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SLY (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 13:177–182

    CrossRef  CAS  PubMed  Google Scholar 

  37. Shino K, Mae T, Maeda A, Miyama T, Shinjo H, Kawakami H (2002) Graft fixation with predetermined tension using a new device, the double spike plate. Arthroscopy 18:908–911

    CrossRef  PubMed  Google Scholar 

  38. Tsuda E, Fukuda Y, Loh JC, Debski RE, Fu FH, Woo SLY (2002) The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy 18:960–967

    CrossRef  PubMed  Google Scholar 

  39. Johnson JS, Smith SD, LaPrade CM, Turnbull TL, LaPrade RF, Wijdicks CA (2015) A biomechanical comparison of femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction under high loads. Am J Sports Med 43:154–160

    CrossRef  Google Scholar 

  40. Boyle MJ, Vovos TJ, Walker CG, Stabile KJ, Roth JM, Garrett WE Jr (2015) Does adjustable-loop femoral cortical suspension loosen after anterior cruciate ligament reconstruction? A retrospective comparative study. Knee 22:304–308

    CrossRef  PubMed  Google Scholar 

  41. Xie X, Liu X, Chen Z, Yu Y, Peng S, Li Q (2015) A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction. Knee 22:100–110

    CrossRef  PubMed  Google Scholar 

  42. Li S, Su W, Zhao J, Xu Y, Bo Z, Ding X, Wei Q (2011) A meta-analysis of hamstring autografts versus bone-patellar tendon-bone autografts for reconstruction of the anterior cruciate ligament. Knee 18:287–293

    CrossRef  PubMed  Google Scholar 

  43. Ejerhed L, Kartus J, Sernert N, Köhler K, Karlsson J (2003) Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? A prospective randomized study with a two-year follow-up. Am J Sports Med 31:19–25

    PubMed  Google Scholar 

  44. Samuelsson K, Andersson D, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthroscopy 25:1139–1174

    CrossRef  PubMed  Google Scholar 

  45. Tsuda E, Okamura Y, Ishibashi Y, Otsuka H, Toh S (2001) Techniques for reducing anterior knee symptoms after anterior cruciate ligament reconstruction using a bone-patellar tendon-bone autograft. Am J Sports Med 29:450–456

    CAS  PubMed  Google Scholar 

  46. Kartus J, Ejerhed L, Sernert N, Brandsson S, Karlsson J (2000) Comparison of traditional and subcutaneous patellar tendon harvest: a prospective study of donor site-related problems after anterior cruciate ligament reconstruction using different graft harvesting techniques. Am J Sports Med 28:328–335

    CAS  PubMed  Google Scholar 

  47. Xergia SA, McClelland JA, Kvist J, Vasiliadis HS, Georgoulis AD (2011) The influence of graft choice on isokinetic muscle strength 4–24 months after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19:768–780

    CrossRef  PubMed  Google Scholar 

  48. Tashiro T, Kurosawa H, Kawakami A, Hikita A, Fukui N (2003) Influence of medial hamstring tendon harvest on knee flexor strength after anterior cruciate ligament reconstruction. A detailed evaluation with comparison of single- and double-tendon harvest. Am J Sports Med 31:522–529

    CrossRef  PubMed  Google Scholar 

  49. Kartus J, Ejerhed L, Eriksson BI, Karlsson J (1999) The localization of the infrapatellar nerves in the anterior knee region with special emphasis on central third patellar tendon harvest: a dissection study on cadaver and amputated specimens. Arthroscopy 15:577–586

    CrossRef  CAS  PubMed  Google Scholar 

  50. Tifford CD, Spero L, Luke T, Plancher KD (2000) The relationship of the infrapatellar branches of the saphenous nerve to arthroscopy portals and incisions for anterior cruciate ligament surgery: an anatomic study. Am J Sports Med 28:562–567

    CAS  PubMed  Google Scholar 

  51. Figueroa D, Calvo R, Vaisman A, Campero M, Moraga C (2008) Injury to the infrapatellar branch of the saphenous nerve in ACL reconstruction with the hamstrings technique: clinical and electrophysiological study. Knee 15:360–363

    CrossRef  CAS  PubMed  Google Scholar 

  52. Sanders B, Rolf R, McClelland W, Xerogeanes J (2007) Prevalence of saphenous nerve injury after autogenous hamstring harvest: an anatomic and clinical study of sartorial branch injury. Arthroscopy 23:956–963

    CrossRef  PubMed  Google Scholar 

  53. Roussignol X, Bertiaux S, Rahali S, Potage D, Duparc F, Dujardin F (2015) Minimally invasive posterior approach in the popliteal fossa for semitendinosus and gracilis tendon harvesting: an anatomic study. Orthop Traumatol Surg Res 101:167–172

    CrossRef  CAS  PubMed  Google Scholar 

  54. Franz W, Baumann A (2016) Minimally invasive semitendinosus tendon harvesting from the popliteal fossa versus conventional hamstring tendon harvesting for ACL reconstruction: a prospective, randomised controlled trial in 100 patients. Knee 23(1):106–110

    CrossRef  PubMed  Google Scholar 

  55. Papageorgiou CD, Kostopoulos VK, Moebius UG, Petropoulou KA, Georgoulis AD, Soucacos PN (2001) Patellar fractures associated with medial-third bone-patellar tendon-bone autograft ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 9:151–154

    CrossRef  CAS  PubMed  Google Scholar 

  56. Lee S, Seong SC, Jo CH, Han HS, An JH, Lee MC (2007) Anterior cruciate ligament reconstruction with use of autologous quadriceps tendon graft. J Bone Joint Surg Am 89(suppl 3):116–126

    CrossRef  PubMed  Google Scholar 

  57. Rubinstein RA Jr, Shelbourne KD, VanMeter CD, McCarroll JC, Rettig AC (1994) Isolated autogenous bone-patellar tendon-bone graft site morbidity. Am J Sports Med 22:324–327

    CrossRef  Google Scholar 

  58. Yasuda K, Tsujino J, Ohkoshi Y, Tanabe Y, Kaneda K (1995) Graft site morbidity with autogenous semitendinosus and gracilis tendons. Am J Sports Med 23:706–714

    CrossRef  CAS  PubMed  Google Scholar 

  59. Kanamoto T, Tanaka Y, Yonetani Y, Kita K, Amano H, Kusano M, Hirabayashi S, Horibe S (2015) Anterior knee symptoms after double-bundle ACL reconstruction with hamstring tendon autografts: an ultrasonographic and power Doppler investigation. Knee Surg Sports Traumatol Arthrosc 23:3324–3329

    CrossRef  PubMed  Google Scholar 

  60. Poolman RW, Abouali JA, Conter HJ, Bhandari M (2007) Overlapping systematic reviews of anterior cruciate ligament reconstruction comparing hamstring autograft with bone-patellar tendon-bone autograft: why are they different? J Bone Joint Surg Am 89:1542–1552

    CrossRef  PubMed  Google Scholar 

  61. Mascarenhas R, Cvetanovich GL, Sayegh ET, Verma NN, Cole BJ, Bush-Joseph C, Bach BR Jr (2015) Does double-bundle anterior cruciate ligament reconstruction improve postoperative knee stability compared with single-bundle techniques? A systematic review of overlapping meta-analyses. Arthroscopy 31:1185–1196

    CrossRef  PubMed  Google Scholar 

  62. Björnsson H, Desai N, Musahl V, Alentorn-Geli E, Bhandari M, Fu F, Samuelsson K (2015) Is double-bundle anterior cruciate ligament reconstruction superior to single-bundle? A comprehensive systematic review. Knee Surg Sports Traumatol Arthrosc 23:696–739

    CrossRef  PubMed  Google Scholar 

  63. Li YL, Ning GZ, Wu Q, Wu QL, Li Y, Hao Y, Feng SQ (2014) Single-bundle or double-bundle for anterior cruciate ligament reconstruction: a meta-analysis. Knee 21:28–37

    CrossRef  PubMed  Google Scholar 

  64. Suzuki T, Shino K, Otsubo H, Suzuki D, Mae T, Fujimiya M, Yamashita T, Fujie H (2014) Biomechanical comparison between the rectangular-tunnel and the round-tunnel anterior cruciate ligament reconstruction procedures with a bone-patellar tendon-bone graft. Arthroscopy 30:1294–1302

    CrossRef  PubMed  Google Scholar 

  65. Sasaki S, Tsuda E, Hiraga Y, Yamamoto Y, Maeda S, Sasaki E, Ishibashi Y (2016) Prospective randomized study of objective and subjective clinical results between double-bundle and single-bundle anterior cruciate ligament reconstruction. Am J Sports Med (in press)

    Google Scholar 

  66. Rahr-Wagner L, Thillemann TM, Pedersen AB, Lind M (2014) Comparison of hamstring tendon and patellar tendon grafts in anterior cruciate ligament reconstruction in a nationwide population-based cohort study: results from the Danish registry of knee ligament reconstruction. Am J Sports Med 42:278–284

    CrossRef  PubMed  Google Scholar 

  67. Persson A, Fjeldsgaard K, Gjertsen JE, Kjellsen AB, Engebretsen L, Hole RM, Fevang JM (2014) Increased risk of revision with hamstring tendon grafts compared with patellar tendon grafts after anterior cruciate ligament reconstruction: a study of 12,643 patients from the Norwegian cruciate ligament registry, 2004–2012. Am J Sports Med 2:285–291

    CrossRef  Google Scholar 

  68. Gifstad T, Foss OA, Engebretsen L, Lind M, Forssblad M, Albrektsen G, Drogset JO (2014) Lower risk of revision with patellar tendon autografts compared with hamstring autografts: a registry study based on 45,998 primary ACL reconstructions in Scandinavia. Am J Sports Med 42:2319–2328

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tsuda M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tsuda, E., Ishibashi, Y. (2016). Graft Selection. In: Ochi, M., Shino, K., Yasuda, K., Kurosaka, M. (eds) ACL Injury and Its Treatment. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55858-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55858-3_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55856-9

  • Online ISBN: 978-4-431-55858-3

  • eBook Packages: MedicineMedicine (R0)