Skip to main content

A Model of Stroke and Vascular Injury in the Brain

  • Chapter
  • First Online:
Book cover Mouse Models of Vascular Diseases

Abstract

Recent clinical trials have revealed high rates of delayed restenosis and hemorrhage in angioplasty and stenting in intracranial atherosclerotic diseases, but the causes of this are still unclear. These unfavorable results may be caused by unique properties of intracranial internal carotid arteries (IICAs) such as lack of an external elastic lamina and presence of surrounding cerebrospinal fluid. Clarification of the mechanism of remodeling after vascular injury to IICAs using injury models is needed, although several studies have clarified the pathophysiology and molecular mechanisms involved in the remodeling process after injury to extracranial arteries. In this section, a detailed protocol for an IICA injury (IICAI) model is summarized. We also review the intraluminal suture middle cerebral artery occlusion (MCAo) model in mice, which causes cerebral infarction in the area of the middle cerebral artery region, because the IICAI model is a modification of the intraluminal suture MCAo model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeng J-S, Tang S-C, Liu H-M. Epidemiology, diagnosis and management of intracranial atherosclerotic disease. Expert Rev Cardiovasc Ther. 2010;8:1423–32.

    Article  PubMed  Google Scholar 

  2. Schumacher HC, Meyers PM, Higashida RT, Derdeyn CP, Lavine SD, Nesbit GM, Sacks D, Rasmussen P, Wechsler LR. Reporting standards for angioplasty and stent-assisted angioplasty for intracranial atherosclerosis. J Vasc Interv Radiol. 2009;20:S451–73.

    Article  PubMed  Google Scholar 

  3. Arenillas JF, Molina CA, Chacón P, Rovira A, Montaner J, Coscojuela P, Sánchez E, Quintana M, Alvarez-Sabín J. High lipoprotein (a), diabetes, and the extent of symptomatic intracranial atherosclerosis. Neurology. 2004;63:27–32.

    Article  CAS  PubMed  Google Scholar 

  4. Chen S, Hanel RA. The final SAMMPRIS results: a review. World Neurosurg. 2014;82:5–6.

    Article  PubMed  Google Scholar 

  5. Stenting of Symptomatic Atherosclerotic Lesions in the Vertebral or Intracranial Arteries (SSYLVIA): study results. Stroke. 2004;35:1388–92.

    Google Scholar 

  6. Gröschel K, Schnaudigel S, Pilgram SM, Wasser K, Kastrup A. A systematic review on outcome after stenting for intracranial atherosclerosis. Stroke. 2009;40:e340–7.

    Article  PubMed  Google Scholar 

  7. Gupta R, Al-ali F, Thomas AJ, Horowitz MB, Barrow T, Vora NA, Uchino K, Hammer MD, Wechsler LR, Jovin G. Drug-Eluting Stent Placement in the Intracranial. Stroke. 2006. doi:10.1161/01.STR.0000242481.38262.7b.

    Google Scholar 

  8. Fields JD, Petersen BD, Lutsep HL, Nesbit GM, Liu KC, Dogan A, Lee DS, Clark WM, Barnwell SL. Drug eluting stents for symptomatic intracranial and vertebral artery stenosis. Interv Neuroradiol. 2011;17:241–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Chimowitz MI, Lynn MJ, Derdeyn CP, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365:993–1003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Walmsley JG, Canham PB. Orientation of nuclei as indicators of smooth muscle cell alignment in the cerebral artery. Blood Vessels. 1979;16:43–51.

    CAS  PubMed  Google Scholar 

  11. Lee RM. Morphology of cerebral arteries. Pharmacol Ther. 1995;66:149–73.

    Article  CAS  PubMed  Google Scholar 

  12. Shimamura M, Nakagami H, Sata M, et al. Unique remodeling processes after vascular injury in intracranial arteries: analysis using a novel mouse model. J Cereb Blood Flow Metab. 2013;33:1153–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation. 2007;115:1599–608.

    Article  CAS  PubMed  Google Scholar 

  14. Kim HA, Whittle SC, Lee S, Chu HX, Zhang SR, Wei Z, Arumugam TV, Vinh A, Drummond GR, Sobey CG. Brain immune cell composition and functional outcome after cerebral ischemia: comparison of two mouse strains. Front Cell Neurosci. 2014;8:365.

    PubMed Central  PubMed  Google Scholar 

  15. Shimamura M, Nakagami H, Osako MK, Kurinami H, Koriyama H, Zhengda P, Tomioka H, Tenma A, Wakayama K, Morishita R. OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci U S A. 2014;111:8191–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Shimamura M, Sato N, Oshima K, Aoki M, Kurinami H, Waguri S, Uchiyama Y, Ogihara T, Kaneda Y, Morishita R. Novel therapeutic strategy to treat brain ischemia: overexpression of hepatocyte growth factor gene reduced ischemic injury without cerebral edema in rat model. Circulation. 2004;109:424–31.

    Article  CAS  PubMed  Google Scholar 

  17. Shimamura M, Taniyama Y, Katsuragi N, Koibuchi N, Kyutoku M, Sato N, Allahtavakoli M, Wakayama K, Nakagami H, Morishita R. Role of central nervous system periostin in cerebral ischemia. Stroke. 2012;43:1108–14.

    Article  CAS  PubMed  Google Scholar 

  18. Kurinami H, Sato N, Shinohara M, Takeuchi D, Takeda S, Shimamura M, Ogihara T, Morishita R. Prevention of amyloid beta-induced memory impairment by fluvastatin, associated with the decrease in amyloid beta accumulation and oxidative stress in amyloid beta injection mouse model. Int J Mol Med. 2008;21:531–7.

    CAS  PubMed  Google Scholar 

  19. Shan J, Nguyen TB, Totary-Jain H, Dansky H, Marx SO, Marks AR. Leptin-enhanced neointimal hyperplasia is reduced by mTOR and PI3K inhibitors. Proc Natl Acad Sci U S A. 2008;105:19006–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munehisa Shimamura M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Shimamura, M. et al. (2016). A Model of Stroke and Vascular Injury in the Brain. In: Sata, M. (eds) Mouse Models of Vascular Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55813-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55813-2_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55811-8

  • Online ISBN: 978-4-431-55813-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics