Skip to main content

Effects of Vitamin D on Bone and Skeletal Muscle

  • Chapter
Osteoporosis in Orthopedics

Abstract

The native and active forms of vitamin D exert various effects on both bone and skeletal muscle. Vitamin D prevents osteoclastogenesis, reduces bone resorption in osteoporotic patients, and stimulates bone formation by acting on osteoblasts. A new active vitamin D analog, eldecalcitol, has unique effects on bone formation known as mini-modeling, which are independent of bone resorption. Vitamin D also has positive effects on skeletal muscle by increasing muscle strength and improving physical functions in older people, particularly in those who are vitamin D deficient. The mechanisms of vitamin D effects on skeletal muscle are both indirect via calcium and phosphate and direct via 1α,25(OH)2D3 activation of the vitamin D receptor on muscle cells. Based on these effects of vitamin D on both bone and skeletal muscle, many meta-analyses have shown that vitamin D decreases the risk of falls as well as osteoporotic vertebral and non-vertebral fractures. The interrelationships between muscle and bone related to vitamin D actions and the molecular mechanisms by which vitamin D affects both bone and skeletal muscle are still incongruent in the different backgrounds of subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Papadimitropoulos E, Well G, Shea B et al (2002) Osteoporosis Methodology Group and The Osteoporosis Research Advisory Group. Meta-analyses of therapies for postmenopausal osteoporosis. VIII: meta-analysis of the efficacy of vitamin D treatment in preventing osteoporosis in postmenopausal women. Endocr Rev 23:560–569

    Article  CAS  PubMed  Google Scholar 

  2. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB et al (2009) Fall prevention with supplement and active forms of vitamin D: a meta-analysis of randomized controlled trials. Br Med J 339:b3692. doi:10.1136/bmj.b3692

    Article  CAS  Google Scholar 

  3. Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8

    Article  CAS  PubMed  Google Scholar 

  4. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80:1689S–1696S

    CAS  PubMed  Google Scholar 

  5. Menczel J, Foldes J, Steinberg R et al (1994) Alfacalcidol (alpha D3) and calcium in osteoporosis. Clin Orthop 300:241–247

    PubMed  Google Scholar 

  6. Sanford M, McCormack PL (2011) Eldecalcitol: a review of its use in the treatment of osteoporosis. Drugs 71:1755–1770

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto T, Endo I (2012) Eldecalcitol for the treatment of osteoporosis. Drugs Today (Barc) 48:189–196

    Article  CAS  Google Scholar 

  8. Okano T, Tsugawa S, Masuda A et al (1989) Regulatory activities of 2β-(3-hydroxypropoxy)-1α25-dihydroxy-vitamin D3, a novel vitamin D3 derivative, on calcium metabolism. Biochem Biophys Res Commun 163:1444–1449

    Article  CAS  PubMed  Google Scholar 

  9. Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goltzman D (2002) Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov 1:784–796

    Article  CAS  PubMed  Google Scholar 

  11. Haussler MR, Hasussler CA, Whitfield GK et al (2010) The nuclear vitamin D receptor controls the expression of genes encoding factors with feed the “Fountain of Youth” to mediate healthful aging. J Steroid Biochem Mol Biol 121:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Sarosi I, Yan XQ et al (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97:1566–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson PH, Sawyer RK, Moore AJ et al (2008) Vitamin D depletion induces RANKL-mediated osteoclastogenesis and bone loss in a rodent model. J Bone Miner Res 23:1789–1797

    Article  CAS  PubMed  Google Scholar 

  14. Takasu H, Sugita A, Uchiyama Y et al (2006) c-Fos protein as a target of anti-osteoclastogenic action of vitamin D and synthesis of new analogs. J Clin Invest 116:528–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Endo K, Katsumata K, Hirata M et al (2000) 1,25-dihydroxy-vitamin D3 as well as its analogue OCT lower blood calcium through inhibition of bone resorption in hypercalcemic rats with continuous parathyroid hormone-related peptide infusion. J Bone Miner Res 15:175–181

    Article  CAS  PubMed  Google Scholar 

  16. Shiraishi A, Takeda S, Masaki T et al (2000) Alfacalcidol inhibits bone resorption and stimulates formation in an ovariectomized rat model of osteoporosis: distinct actions from estrogen. J Bone Miner Res 15:770–779

    Article  CAS  PubMed  Google Scholar 

  17. Shibata T, Shiraishi A, Sato T et al (2002) Vitamin D hormone inhibits osteoclastogenesis in vivo by decreasing the pool of osteoclast precursors in bone marrow. J Bone Miner Res 17:622–629

    Article  CAS  PubMed  Google Scholar 

  18. Harada S, Mizoguchi T, Kobayashi Y et al (2012) Daily administration of eldecalcitol (ED-71), an active vitamin D analog, increase bone mineral density by suppressing RANKL expression in mouse trabecular bone. J Bone Miner Res 27:461–473

    Article  CAS  PubMed  Google Scholar 

  19. Uchiyama Y, Higuchi Y, Takeda S et al (2002) ED-71, a vitamin D analog, is a more potent inhibitor of bone resorption than alfacalcidol in an estrogen-deficient rat model of osteoporosis. Bone 30:582–588

    Article  CAS  PubMed  Google Scholar 

  20. Gardiner EM, Baldock PA, Thomas GP et al (2000) Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J 14:1908–1916

    Article  CAS  PubMed  Google Scholar 

  21. Atkins GJ, Kostakis P, Pan B et al (2003) RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res 18:1088–1098

    Article  CAS  PubMed  Google Scholar 

  22. Nakashima T, Hayashi M, Fukunaga T et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  CAS  PubMed  Google Scholar 

  23. De Freitas PHL, Hasegawa T, Takeda S et al (2011) Eldecalcitol, a second-generation vitamin D analog, drives bone minimodeling and reduces osteoclastic number in trabecular bone of ovariectomized rats. Bone 49:335–342

    Article  PubMed  CAS  Google Scholar 

  24. Lieben L, Masuyama R, Torrekens S et al (2012) Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest 122:1803–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris HA, Anderson PH (2010) Autocrine and paracrine actions of vitamin D. Clin Biochem Rev 31:129–138

    PubMed  PubMed Central  Google Scholar 

  26. Kogawa M, Anderson PH, Findlay DM et al (2010) The metabolism of 25(OH)-vitamin D3 by osteoclasts and their precursors regulates the differentiation of osteoclasts. J Steroid Biochem Mol Biol 121:277–280

    Article  CAS  PubMed  Google Scholar 

  27. Kogawa M, Findlay DM, Anderson PH et al (2010) Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology 151:4613–4625

    Article  CAS  PubMed  Google Scholar 

  28. Atkins GJ, Anderson PH, Findlay DM et al (2007) Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone 40:1517–1528

    Article  CAS  PubMed  Google Scholar 

  29. Geng S, Zhou S, Glowacki J (2010) Effects of 25-hydroxyvitamin D3 on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1alphoa-hydroxylase. J Bone Miner Res 26:1145–1153

    Article  PubMed Central  CAS  Google Scholar 

  30. van Driel M, Pols HA, van Leeuwen JP (2004) Osteoblast differentiation and control by vitamin D and vitamin D metabolites. Curr Pharm Des 10:253–255

    Article  Google Scholar 

  31. van Driel M, Koedam M, Buurman CJ et al (2006) Evidence for auto/paracrine actions of vitamin D in bone: 1 alpha-hydroxylase expression and activity in human bone cells. FASEB J 20:2417–2419

    Article  PubMed  CAS  Google Scholar 

  32. Prince M, Banerjee C, Javed A et al (2001) Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J Cell Biochem 80:424–440

    Article  CAS  PubMed  Google Scholar 

  33. Viereck V, Siggelkow H, Tauber S et al (2002) Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J Cell Biochem 86:348–356

    Article  CAS  PubMed  Google Scholar 

  34. Drissi H, Pouliot A, Koolloos C et al (2002) 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 274:323–333

    Article  CAS  PubMed  Google Scholar 

  35. Weissen-Plenz G, Nitschke Y, Rutsch F (2008) Mechanisms of arterial calcification: spotlight on the inhibitors. Adv Clin Chem 46:263–293

    Article  CAS  PubMed  Google Scholar 

  36. Fretz JA, Zella LA, Kim S et al (2006) 1,25-dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription. Mol Endocrinol 20:2215–2230

    Article  CAS  PubMed  Google Scholar 

  37. Barthel TK, Mathern DR, Whitfield GK et al (2007) 1,25-dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 103:381–388

    Article  CAS  PubMed  Google Scholar 

  38. van de Peppel J, van Leeuwen JP (2014) Vitamin D and gene networks in human osteoblasts. Front Physiol 5:137. doi:10.3389/fphys.2014.00137. eCollection 2014

    PubMed  PubMed Central  Google Scholar 

  39. van Driel M, van Leeuwen JP (2014) Vitamin D endocrine system and osteoblasts. Bonekey Rep. doi:10.1038/bonekey.2013.227

    PubMed  PubMed Central  Google Scholar 

  40. Amling M, Priemel M, Holzmann T et al (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987

    CAS  PubMed  Google Scholar 

  41. Yamamoto Y, Yoshizawa T, Fukuda T et al (2013) Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 154:1008–1020

    Article  CAS  PubMed  Google Scholar 

  42. Anderson PH, Atkins GJ, Turner AG et al (2011) Vitamin D metabolism within bone cells: effects on bone structure and strength. Mol Cell Endocrinol 347:42–47

    Article  CAS  PubMed  Google Scholar 

  43. Okuda N, Takeda S, Shinomiya K et al (2007) ED-71, a novel vitamin D analog, promotes bone formation and angiogenesis and inhibits bone resorption after bone marrow ablation. Bone 40:281–292

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka Y, Nakamura T, Nishida S et al (1996) Effects of a synthetic vitamin D analog, ED-71, one bone dynamics and strength in cancellous and cortical bone in prednisolone-treated rats. J Bone Miner Res 11:325–336

    Article  CAS  PubMed  Google Scholar 

  45. Tsurukami H, Nakamura T, Suzuki K et al (1994) A novel synthetic vitamin D analogue, 2 beta-(3-hydroxyropoxy)1 alpha, 25-dihydroxyvitamin D3 (ED-71), increases bone mass by stimulating the bone formation in normal and ovariectomized rats. Calcif Tissue Int 54:142–149

    Article  CAS  PubMed  Google Scholar 

  46. Saito H, Takeda S, Amizuka N (2013) Eldecalcitol and calcitriol stimulates bone minimodeling focal bone formation without prior bone resorption, in rat trabecular bone. J Steroid Biochem Mol Biol 136:178–182

    Article  CAS  PubMed  Google Scholar 

  47. Turner AG, Hanrath MA, Morris HA et al (2014) The local production of 1,25(OH)2D3 promotes osteoblast and osteocyte maturation. J Steroid Biochem Mol Biol 144:114–118

    Article  CAS  PubMed  Google Scholar 

  48. Kolek OI, Hines ER, Jones MD et al (2005) 1α25-dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042

    Article  CAS  PubMed  Google Scholar 

  49. Pereira RC, Juppner H, Azucena-Serrano CE et al (2009) Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 45:1161–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lanske B, Densmore MJ, Erben RG (2014) Vitamin D endocrine system and osteocytes. Bonekey Rep 3:494. doi:10.1038/bonekey.2013.228. eCollection 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ross AC, Manson JE, Abrams SA et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reid IR, Bolland MJ, Grey A (2014) Effects of vitamin D supplements on bone mineral density: systematic review and meta-analysis. Lancet 383:146–155

    Article  CAS  PubMed  Google Scholar 

  53. Shiraki M, Kushida K, Yamazaki K et al (1996) Effects of 2 year’s treatment of osteoporosis with 1α-hydroxy vitamin D3 on bone mineral density and incidence of fracture: a placebo-controlled, double-blind prospective study. Endocr J 43:211–220

    Article  CAS  Google Scholar 

  54. Gallagher JC, Fowler SE, Detter JR et al (2001) Combination treatment with estrogen and calcitriol in prevention of age-related bone loss. J Clin Endocrinol Metab 86:3618–3628

    Article  CAS  PubMed  Google Scholar 

  55. Gorai I, Tanaka Y, Imacki Y (2006) Raloxifene when combined with 1a(OH) vitamin D more greatly suppresses bone turnover and increases bone density than when used alone in postmenopausal Japanese women with osteoporosis or osteopenia. J Bone Miner Res 21:S186

    Google Scholar 

  56. Frediani B, Allegri A, Bisohno S et al (1998) Effects of combined treatment with calcitriol plus alendronate on bone mass and bone turnover in postmenopausal osteoporosis. Two years of continuous treatment. Clin Drug Invest 14:235–244

    Article  Google Scholar 

  57. Miyakoshi N, Shimada Y, Ando S et al (2006) Effects of alfacalcidol alone or in combination with elcatonin on incidence of osteoporotic vertebral fractures in postmenopausal women with spondylosis. J Bone Miner Metab 24:491–497

    Article  CAS  PubMed  Google Scholar 

  58. Sakai S, Endo K, Takeda S et al (2012) Combination therapy with eldecalcitol and alendronate has therapeutic advantages over monotherapy by improving bone strength. Bone 50:1054–1063

    Article  CAS  PubMed  Google Scholar 

  59. Sugimoto M, Futaki N, Harada M et al (2013) Effects of combined treatment with eldecalcitol and alendronate on bone mass, mechanical properties, and bone histomorphometry in ovariectomized rat: a comparison with alfacalcidol and alendronate. Bone 52:181–188

    Article  CAS  PubMed  Google Scholar 

  60. Takeda S, Sakai S, Shiraishi A et al (2013) Combination treatment with eldecalcitol (ED-71) and raloxifene improves bone mechanical strength by suppressing bone turnover and increasing bone mineral density in ovariectomized rats. Bone 53:167–173

    Article  CAS  PubMed  Google Scholar 

  61. Matsumoto T, Miki T, Hagino H et al (2005) A new active vitamin D. ED-71, increases bone mass in osteoporotic patients under vitamin D supplementation: a randomized, double-blind, placebo-controlled clinical trial. J Clin Endocrinol Metab 90:5031–5036

    Article  CAS  PubMed  Google Scholar 

  62. Matsumoto T, Kubodera N (2007) ED-71 Study Group. ED-71, a new active vitamin D3, increases bone mineral density regardless of serum 25(OH)D levels in osteoporotic subjects. J Steroid Biochem Mol Biol 103:584–586

    Article  CAS  PubMed  Google Scholar 

  63. Noguchi Y, Kawate H, Nomura M et al (2013) Eldecalcitol for the treatment of osteoporosis. Clin Interv Aging 8:1313–1321

    PubMed  PubMed Central  Google Scholar 

  64. Nishikawa T, Ogawa S, Kogita K et al (2000) Additive effects of combined treatment with etidronate and alfacalcidol on bone mass and mechanical properties in ovariectomized rats. Bone 27:647–654

    Article  CAS  PubMed  Google Scholar 

  65. Saito M, Shiraishi A, Ito M et al (2010) Comparison of effects of alfacalcidol and alendronate on mechanical properties and bone collagen cross-links of callus in the fracture repair rat model. Bone 46:1170–1179

    Article  CAS  PubMed  Google Scholar 

  66. Saito M, Marumo K, Ushiku C et al (2011) Effects of alfacalcidol on mechanical properties and collagen cross-links of the femoral diaphysis in glucocorticoid-treated rats. Calcif Tissue Int 88:314–324

    Article  CAS  PubMed  Google Scholar 

  67. Nagaoka H, Terajima M, Yamada S et al (2014) Alfacalcidol enhances collagen quality in ovariectomized rat bones. J Orthop Res 32:1030–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shiraishi A, Sakai S, Saito H et al (2014) Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal formation in the senescence-accelerated SAM/P6 mice- a comparison with alfacalcidol. J Steroid Biochem Mol Biol 144:119–123

    Article  CAS  PubMed  Google Scholar 

  69. Ito M, Nakamura T, Fukunaga M et al (2011) Effect of eldecalcitol, an active vitamin D analog, on hip structure and biomechanical properties: 3D assessment by clinical CT. Bone 49:328–334

    Article  CAS  PubMed  Google Scholar 

  70. Girgis CM, Clifton-Bligh RJ, Hamrick MW et al (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34:33–83

    Article  CAS  PubMed  Google Scholar 

  71. Daly RM, Gagnon C, Lu ZX et al (2012) Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: a national, population-based study. Clin Endocrinol (Oxf) 77:26–35

    Article  Google Scholar 

  72. Forrest KY, Stuhldreher WL (2011) Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res 31:48–54

    Article  CAS  PubMed  Google Scholar 

  73. Visser M, Deeg DJ, Lips P (2003) Longitudinal Aging Study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772

    Article  CAS  PubMed  Google Scholar 

  74. Wicherts LS, van Schoor NM, Boeke AJ et al (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92:2058–2065

    Article  CAS  PubMed  Google Scholar 

  75. Pfeifer M, Minne HW (1999) Vitamin D and hip fracture. Trends Endocrinol Metab 10:417–420

    Article  CAS  PubMed  Google Scholar 

  76. Sato Y, Inose M, Higuchi I et al (2002) Changes in the supporting muscles of the fractured hip in elderly women. Bone 30:325–330

    Article  CAS  PubMed  Google Scholar 

  77. Eriksen EF, Glerup H (2002) Vitamin D deficiency and aging: implications for general health and osteoporosis. Biogerontology 3:73–77

    Article  CAS  PubMed  Google Scholar 

  78. Schubert L, DeLuca HF (2010) Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys 500:157–161

    Article  CAS  PubMed  Google Scholar 

  79. Maekawa S, Miyakoshi N, Kasukawa Y et al (2008) Effects of alfacalcidol on muscle strength, fatigue, and bone mineral density in aged rats. Akita J Med 35:53–58

    CAS  Google Scholar 

  80. Kasukawa Y, Miyakoshi N, Maekawa S et al (2010) Effects of alfacalcidol on muscle strength, muscle fatigue, and bone mineral density in normal and ovariectomized rats. Biomed Res 31:273–279

    Article  CAS  PubMed  Google Scholar 

  81. Miyakoshi N, Sasaki H, Kasukawa Y et al (2010) Effects of a vitamin D analog, alfacalcidol, on bone and skeletal muscle in glucocorticoid-treated rats. Biomed Res 31:329–336

    Article  CAS  PubMed  Google Scholar 

  82. Bischoff-Ferrari HA, Dawson-Hughes B et al (2011) Relevance of vitamin D deficiency in adult fracture and fall prevention. In: Vitamin D, vol 2. Elsevier, London, pp 114–1154

    Google Scholar 

  83. Moreira-Pfrimer LD, Pedrosa MA, Teixeira L et al (2009) Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann Nutr Metab 54:291–300

    Article  CAS  PubMed  Google Scholar 

  84. Zhu K, Austin N, Devine A et al (2010) A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J Am Geriatr Soc 58:2063–2068

    Article  PubMed  Google Scholar 

  85. Stockton KA, Kandiah DA, Paratz JD et al (2012) Fatigue, muscle strength and vitamin D status in women with systemic lupus erythematosus compared with healthy controls. Lupus 21:271–278

    Article  CAS  PubMed  Google Scholar 

  86. Schacht E, Ringe JD (2012) Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass. Rheumatol Int 32:207–215

    Article  CAS  PubMed  Google Scholar 

  87. Verhaar HJJ, Samson MM, Jansen PAF et al (2000) Muscle strength, functional mobility and vitamin D in older women. Aging Clin Exp Res 12:455–460

    Article  CAS  Google Scholar 

  88. Hara S, Kishimoto KN, Okuno H et al (2013) Effects of alfacalcidol on back extensor strength gained through back extensor exercise in postmenopausal women with osteoporosis. Am J Phys Med Rehabil 92:101–110

    Article  PubMed  Google Scholar 

  89. Koike T, Okawa T, Wada M et al (2003) Effects of a long-term alfacalcidol or calcitonin administration on body sway in Japanese elderly women. J Bone Miner Res 18:S168

    Article  Google Scholar 

  90. Ito S, Harada A, Kasai T et al (2014) Use of alfacalcidol in osteoporotic patients with low muscle mass might increase muscle mass: an investigation using a patient database. Geriatr Gerontol Int 14:122–128

    Article  PubMed  Google Scholar 

  91. Latham NK, Anderson CS, Lee A et al (2003) A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the frailty interventions trial in elderly subjects (FITNESS). J Am Geriatr Soc 51:291–299

    Article  PubMed  Google Scholar 

  92. Stockton KA, Mengersen K, Paratz JD et al (2012) Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int 22:859–871

    Google Scholar 

  93. Annweiler C, Schott AM, Berrut G et al (2009) Vitamin D-related changes in physical performance: a systematic review. J Nutr Health Aging 13:893–898

    Article  CAS  PubMed  Google Scholar 

  94. Sorensen OH, Lund B, Saltin B et al (1979) Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond) 56:157–161

    Article  CAS  Google Scholar 

  95. Sato Y, Iwamoto J, Kanoko T et al (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20:187–192

    Article  CAS  PubMed  Google Scholar 

  96. Tanaka K, Kanazawa I, Yamaguchi T et al (2014) Active vitamin D possesses beneficial effects on the interaction between muscle and bone. Biochem Biophys Res Commun 450:482–487

    Article  CAS  PubMed  Google Scholar 

  97. Kinoshita H, Miyakoshi N, Hongo M et al (2014) Effects of eldecalcitol on body weight, bone mineral density and skeletal muscle in glucocorticoid-treated rats. http://www.asbmr.org/education/AbstractDetail?aid=288c5019-54bd-4dc4-88e4-24d77b687691. Accessed 5 Dec 2014

  98. Sakai S, Suzuki M, Tashiro Y et al (2014) Vitamin D receptor signaling enhances locomotive ability in mice. J Bone Miner Res. doi:10.1002/jbmr.2317

    Google Scholar 

  99. Iwamoto J, Sato Y (2014) Eldecalcitol improves chair-rising time in postmenopausal osteoporotic women treated with bisphosphonate. Ther Clin Risk Manag 16:51–59

    Article  CAS  Google Scholar 

  100. Saito K, Miyakoshi N, Hongo M et al (2013) Active vitamin D3 analog (eldecalcitol) improves muscle strength and dynamic balance in postmenopausal osteoporotic women. J Bone Miner Res 28. http://www.asbmr.org/education/AbstractDetail?aid=908e77b4-cca8-44f8-93d6-c72aa61d6d62. Accessed 5 Dec 2014

  101. Boland R (1986) Role of vitamin D in skeletal muscle function. Endocrinol Rev 7:434–448

    Article  CAS  Google Scholar 

  102. Boland R, de Boland AR, Marinissen MJ et al (1995) Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol 114:1–8

    Article  CAS  PubMed  Google Scholar 

  103. Hamilton B (2009) Vitamin D and human skeletal muscle. Scand J Med Sci Sports 20:182–190

    PubMed  Google Scholar 

  104. de Boland AR, Boland RL (1993) 1,25-dihydroxyvitamin D-3 induces arachidonate mobilization in embryonic chick myoblasts. Biochim Biophys Acta 1179:98–104

    Article  PubMed  Google Scholar 

  105. Gillespie LD, Gillespie WJ, Robertson MC et al (2003) Interventions for preventing falls in elderly people. Cochrane Database Syst Rev 4:CD000340

    PubMed  Google Scholar 

  106. Vellas BJ, Wayne SJ, Romero LJ et al (1997) Fear of falling and restriction of mobility in elderly fallers. Age Ageing 26:189–193

    Article  CAS  PubMed  Google Scholar 

  107. Flicker L, Mead K, Maclnnis RJ et al (2003) Serum vitamin D and falls in older women in residential care in Australia. J Am Geriatr Soc 51:1533–1538

    Article  PubMed  Google Scholar 

  108. Snijder MB, van Schoor NM, Pluijm SM et al (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985

    Article  CAS  PubMed  Google Scholar 

  109. Stein MS, Wark JD, Scherer SC et al (1999) Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel. J Am Geriatr Soc 47:1195–1201

    Article  CAS  PubMed  Google Scholar 

  110. Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB (2004) Effect of Vitamin D on falls: a meta-analysis. JAMA 291:1999–2006

    Article  CAS  PubMed  Google Scholar 

  111. Bischoff-Ferrari HA, Willette WC, Wong JB et al (2009) Prevention of nonvertebral fractures with oral vitamin D and dose dependence: a meta-analysis of randomized controlled trials. Arch Int Med 169:551

    Article  CAS  Google Scholar 

  112. Murad MH, Elamin KB, Abu Elnour NO et al (2011) The effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2997–3006

    Article  CAS  PubMed  Google Scholar 

  113. Graafmans WC, Ooms ME, Hofstee HM et al (1996) Falls in the elderly: a prospective study of risk factors and risk profiles. Am J Epidemiol 143:1129–1136

    Article  CAS  PubMed  Google Scholar 

  114. Broe KE, Chen TC, Weinberg J et al (2007) A higher dose of vitamin D reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. J Am Geriatr Soc 55:234–239

    Article  PubMed  Google Scholar 

  115. Grant AM, Avenell A, Campbell MK et al (2005) Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised evaluation of calcium or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet 365:1621–1628

    Article  CAS  PubMed  Google Scholar 

  116. Porthouse J, Cockayne S, King C et al (2005) Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ 330:1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dukas L, Bischoff HA, Lindpaintner LS et al (2004) Alfacalcidol reduces the number of fallers in a community-dwelling elderly population with a minimum calcium intake of more than 500 mg daily. J Am Geriatr Soc 52:230–236

    Article  PubMed  Google Scholar 

  118. Fujita T, Nakamura S, Ohue M et al (2007) Postural stabilizing effect of alfacalcidol and active absorbable algal calcium (AAA Ca) compared with calcium carbonate assessed by computerized posturography. J Bone Miner Metab 25:68–73

    Article  CAS  PubMed  Google Scholar 

  119. Dukas L, Schacht E, Runge M et al (2010) Effect of a six-month therapy with alfacalcidol on muscle power and balance and the number of fallers and falls. Arzneimittelforschung 60:519–525

    CAS  PubMed  Google Scholar 

  120. Matsumoto T, Ito M, Hayashi Y et al (2011) A new active vitamin D3 analog, eldecalcitol, prevents the risk of osteoporotic fractures – a randomized, active comparator, double-blind study. Bone 49:605–612

    Article  CAS  PubMed  Google Scholar 

  121. Morris HA, Morrison GW, Burr M et al (1984) Vitamin D and femoral neck fractures in elderly South Australian women. Med J Aust 140:519–521

    CAS  PubMed  Google Scholar 

  122. Lidor C, Sagiv P, Amdur B et al (1993) Decrease in bone levels of 1,25-dihydroxyvitamin D in women with subcapital fracture of the femur. Calcif Tissue Int 52:146–148

    Article  CAS  PubMed  Google Scholar 

  123. Lai JK, Lucas RM, Clements MS et al (2010) Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomized controlled trials and observational studies. BMC Public Health 10:331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lips P, van Ginkel FC, Jongen MJ et al (1987) Determinants of vitamin D status in patients with hip fracture and in elderly control subjects. Am J Clin Nutr 46:1005–1010

    CAS  PubMed  Google Scholar 

  125. Bischoff-Ferrari HA, Willett WC, Orav EJ et al (2012) A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med 367:40–49

    Article  CAS  PubMed  Google Scholar 

  126. Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354:669–683

    Article  CAS  PubMed  Google Scholar 

  127. Avenell A, Gillespie WJ, Gillespie LD et al (2009) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev 15:CD000227. doi:10.1002/14651858.CD000227.pub3

    Google Scholar 

  128. Gallagher JC, Riggs BL, Recker RR et al (1989) The effect of calcitriol on patients with postmenopausal osteoporosis with special reference to fracture frequency. Proc Soc Exp Biol Med 191:287–292

    Article  CAS  PubMed  Google Scholar 

  129. Tilyard MW, Spears GF, Thomson J et al (1992) Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med 326:357–362

    Article  CAS  PubMed  Google Scholar 

  130. Richy F, Ethgen O, Bruyere O et al (2004) Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos Int 15:301–310

    Article  CAS  PubMed  Google Scholar 

  131. Richy F, Schacht E, Bryere O et al (2005) Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif Tissue Int 76:176–186

    Article  CAS  PubMed  Google Scholar 

  132. Hagino H, Takano T, Fukunaga M et al (2013) Eldecalcitol reduces the risk of severe vertebral fractures and improves the health-related quality of life in patients with osteoporosis. J Bone Miner Metab 31:183–189

    Article  PubMed  PubMed Central  Google Scholar 

  133. Nakamura T, Takano T, Fukunaga M et al (2013) Eldecalcitol is more effective for the prevention of osteoporotic fractures than alfacalcidol. J Bone Miner Metab 31:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Kasukawa M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kasukawa, Y., Miyakoshi, N., Shimada, Y. (2016). Effects of Vitamin D on Bone and Skeletal Muscle. In: Shimada, Y., Miyakoshi, N. (eds) Osteoporosis in Orthopedics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55778-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55778-4_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55777-7

  • Online ISBN: 978-4-431-55778-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics