Abstract
The native and active forms of vitamin D exert various effects on both bone and skeletal muscle. Vitamin D prevents osteoclastogenesis, reduces bone resorption in osteoporotic patients, and stimulates bone formation by acting on osteoblasts. A new active vitamin D analog, eldecalcitol, has unique effects on bone formation known as mini-modeling, which are independent of bone resorption. Vitamin D also has positive effects on skeletal muscle by increasing muscle strength and improving physical functions in older people, particularly in those who are vitamin D deficient. The mechanisms of vitamin D effects on skeletal muscle are both indirect via calcium and phosphate and direct via 1α,25(OH)2D3 activation of the vitamin D receptor on muscle cells. Based on these effects of vitamin D on both bone and skeletal muscle, many meta-analyses have shown that vitamin D decreases the risk of falls as well as osteoporotic vertebral and non-vertebral fractures. The interrelationships between muscle and bone related to vitamin D actions and the molecular mechanisms by which vitamin D affects both bone and skeletal muscle are still incongruent in the different backgrounds of subjects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Papadimitropoulos E, Well G, Shea B et al (2002) Osteoporosis Methodology Group and The Osteoporosis Research Advisory Group. Meta-analyses of therapies for postmenopausal osteoporosis. VIII: meta-analysis of the efficacy of vitamin D treatment in preventing osteoporosis in postmenopausal women. Endocr Rev 23:560–569
Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB et al (2009) Fall prevention with supplement and active forms of vitamin D: a meta-analysis of randomized controlled trials. Br Med J 339:b3692. doi:10.1136/bmj.b3692
Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8
DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80:1689S–1696S
Menczel J, Foldes J, Steinberg R et al (1994) Alfacalcidol (alpha D3) and calcium in osteoporosis. Clin Orthop 300:241–247
Sanford M, McCormack PL (2011) Eldecalcitol: a review of its use in the treatment of osteoporosis. Drugs 71:1755–1770
Matsumoto T, Endo I (2012) Eldecalcitol for the treatment of osteoporosis. Drugs Today (Barc) 48:189–196
Okano T, Tsugawa S, Masuda A et al (1989) Regulatory activities of 2β-(3-hydroxypropoxy)-1α25-dihydroxy-vitamin D3, a novel vitamin D3 derivative, on calcium metabolism. Biochem Biophys Res Commun 163:1444–1449
Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602
Goltzman D (2002) Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov 1:784–796
Haussler MR, Hasussler CA, Whitfield GK et al (2010) The nuclear vitamin D receptor controls the expression of genes encoding factors with feed the “Fountain of Youth” to mediate healthful aging. J Steroid Biochem Mol Biol 121:88–97
Li J, Sarosi I, Yan XQ et al (2000) RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A 97:1566–1571
Anderson PH, Sawyer RK, Moore AJ et al (2008) Vitamin D depletion induces RANKL-mediated osteoclastogenesis and bone loss in a rodent model. J Bone Miner Res 23:1789–1797
Takasu H, Sugita A, Uchiyama Y et al (2006) c-Fos protein as a target of anti-osteoclastogenic action of vitamin D and synthesis of new analogs. J Clin Invest 116:528–535
Endo K, Katsumata K, Hirata M et al (2000) 1,25-dihydroxy-vitamin D3 as well as its analogue OCT lower blood calcium through inhibition of bone resorption in hypercalcemic rats with continuous parathyroid hormone-related peptide infusion. J Bone Miner Res 15:175–181
Shiraishi A, Takeda S, Masaki T et al (2000) Alfacalcidol inhibits bone resorption and stimulates formation in an ovariectomized rat model of osteoporosis: distinct actions from estrogen. J Bone Miner Res 15:770–779
Shibata T, Shiraishi A, Sato T et al (2002) Vitamin D hormone inhibits osteoclastogenesis in vivo by decreasing the pool of osteoclast precursors in bone marrow. J Bone Miner Res 17:622–629
Harada S, Mizoguchi T, Kobayashi Y et al (2012) Daily administration of eldecalcitol (ED-71), an active vitamin D analog, increase bone mineral density by suppressing RANKL expression in mouse trabecular bone. J Bone Miner Res 27:461–473
Uchiyama Y, Higuchi Y, Takeda S et al (2002) ED-71, a vitamin D analog, is a more potent inhibitor of bone resorption than alfacalcidol in an estrogen-deficient rat model of osteoporosis. Bone 30:582–588
Gardiner EM, Baldock PA, Thomas GP et al (2000) Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J 14:1908–1916
Atkins GJ, Kostakis P, Pan B et al (2003) RANKL expression is related to the differentiation state of human osteoblasts. J Bone Miner Res 18:1088–1098
Nakashima T, Hayashi M, Fukunaga T et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234
De Freitas PHL, Hasegawa T, Takeda S et al (2011) Eldecalcitol, a second-generation vitamin D analog, drives bone minimodeling and reduces osteoclastic number in trabecular bone of ovariectomized rats. Bone 49:335–342
Lieben L, Masuyama R, Torrekens S et al (2012) Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest 122:1803–1815
Morris HA, Anderson PH (2010) Autocrine and paracrine actions of vitamin D. Clin Biochem Rev 31:129–138
Kogawa M, Anderson PH, Findlay DM et al (2010) The metabolism of 25(OH)-vitamin D3 by osteoclasts and their precursors regulates the differentiation of osteoclasts. J Steroid Biochem Mol Biol 121:277–280
Kogawa M, Findlay DM, Anderson PH et al (2010) Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology 151:4613–4625
Atkins GJ, Anderson PH, Findlay DM et al (2007) Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone 40:1517–1528
Geng S, Zhou S, Glowacki J (2010) Effects of 25-hydroxyvitamin D3 on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1alphoa-hydroxylase. J Bone Miner Res 26:1145–1153
van Driel M, Pols HA, van Leeuwen JP (2004) Osteoblast differentiation and control by vitamin D and vitamin D metabolites. Curr Pharm Des 10:253–255
van Driel M, Koedam M, Buurman CJ et al (2006) Evidence for auto/paracrine actions of vitamin D in bone: 1 alpha-hydroxylase expression and activity in human bone cells. FASEB J 20:2417–2419
Prince M, Banerjee C, Javed A et al (2001) Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J Cell Biochem 80:424–440
Viereck V, Siggelkow H, Tauber S et al (2002) Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J Cell Biochem 86:348–356
Drissi H, Pouliot A, Koolloos C et al (2002) 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfa1 gene promoter. Exp Cell Res 274:323–333
Weissen-Plenz G, Nitschke Y, Rutsch F (2008) Mechanisms of arterial calcification: spotlight on the inhibitors. Adv Clin Chem 46:263–293
Fretz JA, Zella LA, Kim S et al (2006) 1,25-dihydroxyvitamin D3 regulates the expression of low-density lipoprotein receptor-related protein 5 via deoxyribonucleic acid sequence elements located downstream of the start site of transcription. Mol Endocrinol 20:2215–2230
Barthel TK, Mathern DR, Whitfield GK et al (2007) 1,25-dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 103:381–388
van de Peppel J, van Leeuwen JP (2014) Vitamin D and gene networks in human osteoblasts. Front Physiol 5:137. doi:10.3389/fphys.2014.00137. eCollection 2014
van Driel M, van Leeuwen JP (2014) Vitamin D endocrine system and osteoblasts. Bonekey Rep. doi:10.1038/bonekey.2013.227
Amling M, Priemel M, Holzmann T et al (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987
Yamamoto Y, Yoshizawa T, Fukuda T et al (2013) Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 154:1008–1020
Anderson PH, Atkins GJ, Turner AG et al (2011) Vitamin D metabolism within bone cells: effects on bone structure and strength. Mol Cell Endocrinol 347:42–47
Okuda N, Takeda S, Shinomiya K et al (2007) ED-71, a novel vitamin D analog, promotes bone formation and angiogenesis and inhibits bone resorption after bone marrow ablation. Bone 40:281–292
Tanaka Y, Nakamura T, Nishida S et al (1996) Effects of a synthetic vitamin D analog, ED-71, one bone dynamics and strength in cancellous and cortical bone in prednisolone-treated rats. J Bone Miner Res 11:325–336
Tsurukami H, Nakamura T, Suzuki K et al (1994) A novel synthetic vitamin D analogue, 2 beta-(3-hydroxyropoxy)1 alpha, 25-dihydroxyvitamin D3 (ED-71), increases bone mass by stimulating the bone formation in normal and ovariectomized rats. Calcif Tissue Int 54:142–149
Saito H, Takeda S, Amizuka N (2013) Eldecalcitol and calcitriol stimulates bone minimodeling focal bone formation without prior bone resorption, in rat trabecular bone. J Steroid Biochem Mol Biol 136:178–182
Turner AG, Hanrath MA, Morris HA et al (2014) The local production of 1,25(OH)2D3 promotes osteoblast and osteocyte maturation. J Steroid Biochem Mol Biol 144:114–118
Kolek OI, Hines ER, Jones MD et al (2005) 1α25-dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042
Pereira RC, Juppner H, Azucena-Serrano CE et al (2009) Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone 45:1161–1168
Lanske B, Densmore MJ, Erben RG (2014) Vitamin D endocrine system and osteocytes. Bonekey Rep 3:494. doi:10.1038/bonekey.2013.228. eCollection 2014
Ross AC, Manson JE, Abrams SA et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58
Reid IR, Bolland MJ, Grey A (2014) Effects of vitamin D supplements on bone mineral density: systematic review and meta-analysis. Lancet 383:146–155
Shiraki M, Kushida K, Yamazaki K et al (1996) Effects of 2 year’s treatment of osteoporosis with 1α-hydroxy vitamin D3 on bone mineral density and incidence of fracture: a placebo-controlled, double-blind prospective study. Endocr J 43:211–220
Gallagher JC, Fowler SE, Detter JR et al (2001) Combination treatment with estrogen and calcitriol in prevention of age-related bone loss. J Clin Endocrinol Metab 86:3618–3628
Gorai I, Tanaka Y, Imacki Y (2006) Raloxifene when combined with 1a(OH) vitamin D more greatly suppresses bone turnover and increases bone density than when used alone in postmenopausal Japanese women with osteoporosis or osteopenia. J Bone Miner Res 21:S186
Frediani B, Allegri A, Bisohno S et al (1998) Effects of combined treatment with calcitriol plus alendronate on bone mass and bone turnover in postmenopausal osteoporosis. Two years of continuous treatment. Clin Drug Invest 14:235–244
Miyakoshi N, Shimada Y, Ando S et al (2006) Effects of alfacalcidol alone or in combination with elcatonin on incidence of osteoporotic vertebral fractures in postmenopausal women with spondylosis. J Bone Miner Metab 24:491–497
Sakai S, Endo K, Takeda S et al (2012) Combination therapy with eldecalcitol and alendronate has therapeutic advantages over monotherapy by improving bone strength. Bone 50:1054–1063
Sugimoto M, Futaki N, Harada M et al (2013) Effects of combined treatment with eldecalcitol and alendronate on bone mass, mechanical properties, and bone histomorphometry in ovariectomized rat: a comparison with alfacalcidol and alendronate. Bone 52:181–188
Takeda S, Sakai S, Shiraishi A et al (2013) Combination treatment with eldecalcitol (ED-71) and raloxifene improves bone mechanical strength by suppressing bone turnover and increasing bone mineral density in ovariectomized rats. Bone 53:167–173
Matsumoto T, Miki T, Hagino H et al (2005) A new active vitamin D. ED-71, increases bone mass in osteoporotic patients under vitamin D supplementation: a randomized, double-blind, placebo-controlled clinical trial. J Clin Endocrinol Metab 90:5031–5036
Matsumoto T, Kubodera N (2007) ED-71 Study Group. ED-71, a new active vitamin D3, increases bone mineral density regardless of serum 25(OH)D levels in osteoporotic subjects. J Steroid Biochem Mol Biol 103:584–586
Noguchi Y, Kawate H, Nomura M et al (2013) Eldecalcitol for the treatment of osteoporosis. Clin Interv Aging 8:1313–1321
Nishikawa T, Ogawa S, Kogita K et al (2000) Additive effects of combined treatment with etidronate and alfacalcidol on bone mass and mechanical properties in ovariectomized rats. Bone 27:647–654
Saito M, Shiraishi A, Ito M et al (2010) Comparison of effects of alfacalcidol and alendronate on mechanical properties and bone collagen cross-links of callus in the fracture repair rat model. Bone 46:1170–1179
Saito M, Marumo K, Ushiku C et al (2011) Effects of alfacalcidol on mechanical properties and collagen cross-links of the femoral diaphysis in glucocorticoid-treated rats. Calcif Tissue Int 88:314–324
Nagaoka H, Terajima M, Yamada S et al (2014) Alfacalcidol enhances collagen quality in ovariectomized rat bones. J Orthop Res 32:1030–1036
Shiraishi A, Sakai S, Saito H et al (2014) Eldecalcitol improves mechanical strength of cortical bones by stimulating the periosteal formation in the senescence-accelerated SAM/P6 mice- a comparison with alfacalcidol. J Steroid Biochem Mol Biol 144:119–123
Ito M, Nakamura T, Fukunaga M et al (2011) Effect of eldecalcitol, an active vitamin D analog, on hip structure and biomechanical properties: 3D assessment by clinical CT. Bone 49:328–334
Girgis CM, Clifton-Bligh RJ, Hamrick MW et al (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34:33–83
Daly RM, Gagnon C, Lu ZX et al (2012) Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: a national, population-based study. Clin Endocrinol (Oxf) 77:26–35
Forrest KY, Stuhldreher WL (2011) Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res 31:48–54
Visser M, Deeg DJ, Lips P (2003) Longitudinal Aging Study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772
Wicherts LS, van Schoor NM, Boeke AJ et al (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92:2058–2065
Pfeifer M, Minne HW (1999) Vitamin D and hip fracture. Trends Endocrinol Metab 10:417–420
Sato Y, Inose M, Higuchi I et al (2002) Changes in the supporting muscles of the fractured hip in elderly women. Bone 30:325–330
Eriksen EF, Glerup H (2002) Vitamin D deficiency and aging: implications for general health and osteoporosis. Biogerontology 3:73–77
Schubert L, DeLuca HF (2010) Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys 500:157–161
Maekawa S, Miyakoshi N, Kasukawa Y et al (2008) Effects of alfacalcidol on muscle strength, fatigue, and bone mineral density in aged rats. Akita J Med 35:53–58
Kasukawa Y, Miyakoshi N, Maekawa S et al (2010) Effects of alfacalcidol on muscle strength, muscle fatigue, and bone mineral density in normal and ovariectomized rats. Biomed Res 31:273–279
Miyakoshi N, Sasaki H, Kasukawa Y et al (2010) Effects of a vitamin D analog, alfacalcidol, on bone and skeletal muscle in glucocorticoid-treated rats. Biomed Res 31:329–336
Bischoff-Ferrari HA, Dawson-Hughes B et al (2011) Relevance of vitamin D deficiency in adult fracture and fall prevention. In: Vitamin D, vol 2. Elsevier, London, pp 114–1154
Moreira-Pfrimer LD, Pedrosa MA, Teixeira L et al (2009) Treatment of vitamin D deficiency increases lower limb muscle strength in institutionalized older people independently of regular physical activity: a randomized double-blind controlled trial. Ann Nutr Metab 54:291–300
Zhu K, Austin N, Devine A et al (2010) A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J Am Geriatr Soc 58:2063–2068
Stockton KA, Kandiah DA, Paratz JD et al (2012) Fatigue, muscle strength and vitamin D status in women with systemic lupus erythematosus compared with healthy controls. Lupus 21:271–278
Schacht E, Ringe JD (2012) Alfacalcidol improves muscle power, muscle function and balance in elderly patients with reduced bone mass. Rheumatol Int 32:207–215
Verhaar HJJ, Samson MM, Jansen PAF et al (2000) Muscle strength, functional mobility and vitamin D in older women. Aging Clin Exp Res 12:455–460
Hara S, Kishimoto KN, Okuno H et al (2013) Effects of alfacalcidol on back extensor strength gained through back extensor exercise in postmenopausal women with osteoporosis. Am J Phys Med Rehabil 92:101–110
Koike T, Okawa T, Wada M et al (2003) Effects of a long-term alfacalcidol or calcitonin administration on body sway in Japanese elderly women. J Bone Miner Res 18:S168
Ito S, Harada A, Kasai T et al (2014) Use of alfacalcidol in osteoporotic patients with low muscle mass might increase muscle mass: an investigation using a patient database. Geriatr Gerontol Int 14:122–128
Latham NK, Anderson CS, Lee A et al (2003) A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the frailty interventions trial in elderly subjects (FITNESS). J Am Geriatr Soc 51:291–299
Stockton KA, Mengersen K, Paratz JD et al (2012) Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int 22:859–871
Annweiler C, Schott AM, Berrut G et al (2009) Vitamin D-related changes in physical performance: a systematic review. J Nutr Health Aging 13:893–898
Sorensen OH, Lund B, Saltin B et al (1979) Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond) 56:157–161
Sato Y, Iwamoto J, Kanoko T et al (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20:187–192
Tanaka K, Kanazawa I, Yamaguchi T et al (2014) Active vitamin D possesses beneficial effects on the interaction between muscle and bone. Biochem Biophys Res Commun 450:482–487
Kinoshita H, Miyakoshi N, Hongo M et al (2014) Effects of eldecalcitol on body weight, bone mineral density and skeletal muscle in glucocorticoid-treated rats. http://www.asbmr.org/education/AbstractDetail?aid=288c5019-54bd-4dc4-88e4-24d77b687691. Accessed 5 Dec 2014
Sakai S, Suzuki M, Tashiro Y et al (2014) Vitamin D receptor signaling enhances locomotive ability in mice. J Bone Miner Res. doi:10.1002/jbmr.2317
Iwamoto J, Sato Y (2014) Eldecalcitol improves chair-rising time in postmenopausal osteoporotic women treated with bisphosphonate. Ther Clin Risk Manag 16:51–59
Saito K, Miyakoshi N, Hongo M et al (2013) Active vitamin D3 analog (eldecalcitol) improves muscle strength and dynamic balance in postmenopausal osteoporotic women. J Bone Miner Res 28. http://www.asbmr.org/education/AbstractDetail?aid=908e77b4-cca8-44f8-93d6-c72aa61d6d62. Accessed 5 Dec 2014
Boland R (1986) Role of vitamin D in skeletal muscle function. Endocrinol Rev 7:434–448
Boland R, de Boland AR, Marinissen MJ et al (1995) Avian muscle cells as targets for the secosteroid hormone 1,25-dihydroxy-vitamin D3. Mol Cell Endocrinol 114:1–8
Hamilton B (2009) Vitamin D and human skeletal muscle. Scand J Med Sci Sports 20:182–190
de Boland AR, Boland RL (1993) 1,25-dihydroxyvitamin D-3 induces arachidonate mobilization in embryonic chick myoblasts. Biochim Biophys Acta 1179:98–104
Gillespie LD, Gillespie WJ, Robertson MC et al (2003) Interventions for preventing falls in elderly people. Cochrane Database Syst Rev 4:CD000340
Vellas BJ, Wayne SJ, Romero LJ et al (1997) Fear of falling and restriction of mobility in elderly fallers. Age Ageing 26:189–193
Flicker L, Mead K, Maclnnis RJ et al (2003) Serum vitamin D and falls in older women in residential care in Australia. J Am Geriatr Soc 51:1533–1538
Snijder MB, van Schoor NM, Pluijm SM et al (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985
Stein MS, Wark JD, Scherer SC et al (1999) Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel. J Am Geriatr Soc 47:1195–1201
Bischoff-Ferrari HA, Dawson-Hughes B, Willett WC, Staehelin HB, Bazemore MG, Zee RY, Wong JB (2004) Effect of Vitamin D on falls: a meta-analysis. JAMA 291:1999–2006
Bischoff-Ferrari HA, Willette WC, Wong JB et al (2009) Prevention of nonvertebral fractures with oral vitamin D and dose dependence: a meta-analysis of randomized controlled trials. Arch Int Med 169:551
Murad MH, Elamin KB, Abu Elnour NO et al (2011) The effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2997–3006
Graafmans WC, Ooms ME, Hofstee HM et al (1996) Falls in the elderly: a prospective study of risk factors and risk profiles. Am J Epidemiol 143:1129–1136
Broe KE, Chen TC, Weinberg J et al (2007) A higher dose of vitamin D reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. J Am Geriatr Soc 55:234–239
Grant AM, Avenell A, Campbell MK et al (2005) Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised evaluation of calcium or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet 365:1621–1628
Porthouse J, Cockayne S, King C et al (2005) Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ 330:1003
Dukas L, Bischoff HA, Lindpaintner LS et al (2004) Alfacalcidol reduces the number of fallers in a community-dwelling elderly population with a minimum calcium intake of more than 500 mg daily. J Am Geriatr Soc 52:230–236
Fujita T, Nakamura S, Ohue M et al (2007) Postural stabilizing effect of alfacalcidol and active absorbable algal calcium (AAA Ca) compared with calcium carbonate assessed by computerized posturography. J Bone Miner Metab 25:68–73
Dukas L, Schacht E, Runge M et al (2010) Effect of a six-month therapy with alfacalcidol on muscle power and balance and the number of fallers and falls. Arzneimittelforschung 60:519–525
Matsumoto T, Ito M, Hayashi Y et al (2011) A new active vitamin D3 analog, eldecalcitol, prevents the risk of osteoporotic fractures – a randomized, active comparator, double-blind study. Bone 49:605–612
Morris HA, Morrison GW, Burr M et al (1984) Vitamin D and femoral neck fractures in elderly South Australian women. Med J Aust 140:519–521
Lidor C, Sagiv P, Amdur B et al (1993) Decrease in bone levels of 1,25-dihydroxyvitamin D in women with subcapital fracture of the femur. Calcif Tissue Int 52:146–148
Lai JK, Lucas RM, Clements MS et al (2010) Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomized controlled trials and observational studies. BMC Public Health 10:331
Lips P, van Ginkel FC, Jongen MJ et al (1987) Determinants of vitamin D status in patients with hip fracture and in elderly control subjects. Am J Clin Nutr 46:1005–1010
Bischoff-Ferrari HA, Willett WC, Orav EJ et al (2012) A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med 367:40–49
Jackson RD, LaCroix AZ, Gass M et al (2006) Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354:669–683
Avenell A, Gillespie WJ, Gillespie LD et al (2009) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev 15:CD000227. doi:10.1002/14651858.CD000227.pub3
Gallagher JC, Riggs BL, Recker RR et al (1989) The effect of calcitriol on patients with postmenopausal osteoporosis with special reference to fracture frequency. Proc Soc Exp Biol Med 191:287–292
Tilyard MW, Spears GF, Thomson J et al (1992) Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med 326:357–362
Richy F, Ethgen O, Bruyere O et al (2004) Efficacy of alphacalcidol and calcitriol in primary and corticosteroid-induced osteoporosis: a meta-analysis of their effects on bone mineral density and fracture rate. Osteoporos Int 15:301–310
Richy F, Schacht E, Bryere O et al (2005) Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures: a comparative meta-analysis. Calcif Tissue Int 76:176–186
Hagino H, Takano T, Fukunaga M et al (2013) Eldecalcitol reduces the risk of severe vertebral fractures and improves the health-related quality of life in patients with osteoporosis. J Bone Miner Metab 31:183–189
Nakamura T, Takano T, Fukunaga M et al (2013) Eldecalcitol is more effective for the prevention of osteoporotic fractures than alfacalcidol. J Bone Miner Metab 31:417–422
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Japan
About this chapter
Cite this chapter
Kasukawa, Y., Miyakoshi, N., Shimada, Y. (2016). Effects of Vitamin D on Bone and Skeletal Muscle. In: Shimada, Y., Miyakoshi, N. (eds) Osteoporosis in Orthopedics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55778-4_9
Download citation
DOI: https://doi.org/10.1007/978-4-431-55778-4_9
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-55777-7
Online ISBN: 978-4-431-55778-4
eBook Packages: MedicineMedicine (R0)