Skip to main content

The Geometry of Lower Extremity and Atypical Femoral Fractures

  • Chapter
Book cover Osteoporosis in Orthopedics

Abstract

Osteoporosis is a systemic skeletal disease that is characterized by low bone mass and the structural deterioration of bone tissue leading to bone fragility and an increased risk of fracture. Fractures, most notably of the hip, are associated with significant morbidity and mortality. From a patient’s perspective, a hip fracture and the subsequent loss of mobility and autonomy often represent a major drop in the quality of life.

Although it had been thought to be a natural part of the aging process in women, osteoporosis is no longer considered age or sex dependent, and it is largely preventable due to the remarkable progress in the scientific understanding of its causes, diagnosis, and treatment. Bone strength primarily reflects the integration of bone density and bone quality. The treatment of osteoporosis seeks to increase the bone mass and, hopefully, to improve bone quality, resulting in the strengthening of the bone structure. As bone is a remodeling organ and because of recent developments in the field of bone biology, we have recently become able to increase bone mass and bone strength by modulating the bone remodeling processes. However, the goal of therapy is fracture prevention.

The bisphosphonates (BPs), a class of antiresorptive agents, are the current cornerstone of osteoporosis treatment and prevention. These nitrogen-containing compounds bind to the bone surface. Treatment with bisphosphonates reduces the rate of bone resorption, increases bone mineral density, and improves trabecular connectivity. These resultant effects serve to improve bone strength and reduce the risk of fracture. Denosumab, a fully human monoclonal antibody against the receptor activator of nuclear factor-κB ligand (RANKL), prevents the interaction of RANKL with RANK, its receptor, on osteoclasts and their precursors, thereby blocking the formation, function, and survival of osteoclasts. At the moment, these anti-bone-resorbing agents are only drugs that can reduce the incidence of osteoporotic hip fragility fractures in osteoporotic patients. However, treatments with these agents must be continued for 3–4 years in order to reduce the risk of both vertebral and non-vertebral fractures in osteoporotic women.

In spite of their clinical benefits, the long-term treatment with BPs has raised questions regarding their associations with rare but serious adverse events, including atypical femoral fractures (AFFs). Currently, the long-term use of BPs is considered to be linked to the occurrence of AFFs. Although the evidence had been controversial regarding the association between the occurrence of AFFs and the use of BPs, more recent studies with radiographic adjudication have supported that an association exists. However, the pathogenesis of AFFs is still not completely understood.

AFFs are characterized by unique radiographic features, such as a transverse fracture line, a periosteal callus formation at the fracture site and little or no comminution, and also by unique clinical features, such as prodromal pain and bilaterality, that resemble stress fractures or reactions. Based upon new information, an American Society for Bone and Mineral Research (ASBMR) task force reported the original case definition to highlight the unusual radiographic features that distinguish AFFs from ordinary osteoporotic typical femoral fractures (TFFs) and to provide more precise guidance on what is meant by transverse orientation. The epidemiological evidence for a relationship between BP use and AFFs has become more compelling. While AFFs appear to be more common in patients who have been exposed to the long-term use of BPs, every series includes patients who have not been treated with BPs, which suggests the possible presence of AFF “background factors” in osteoporosis patients. The majority of studies have found a significant association with glucocorticoid (GC) use or duration of use. Although the relative risks of AFFs are very high in patients who use BPs, ranging from 2.1 to 128, the absolute risk is extremely low, ranging from 3.2 to 50 cases per 100,000 person-years. Thus, these fractures are rare, particularly when considered against the incidence of common osteoporotic fractures of all types and of ordinary TFFs, all of which have been proven to decrease with BP therapy. In addition, increasing reports have suggested an association between denosumab and AFFs. Therefore, it becomes more important to know the “risk factors” and/or the “background factors” of AFF to treat patients with osteoporosis who are susceptible to osteoporotic fractures.

We previously reported that the incidence of AFFs in the Japanese population was similar to that in Caucasians and that the taking of BPs and GCs and the presence of collagen diseases were the risk factors for developing AFFs. We also reported that fracture sites of AFFs are associated with the standing lower limb alignment and that lower limb alignment is suggested to be one of the risk factors for AFFs. In this section, we focus on the epidemiology, pathology, and risk factors of AFFs and especially on the involvement of the geometry of the lower extremities as one of the risk factors of AFFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287. doi:10.1016/S0140-6736(10)62349-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, Chesnut CH 3rd, Brown J, Eriksen EF, Hoseyni MS, Axelrod DW, Miller PD (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 282(14):1344–1352

    Article  CAS  PubMed  Google Scholar 

  3. Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, Kavanagh KL, Triffitt JT, Lundy MW, Phipps RJ, Barnett BL, Coxon FP, Rogers MJ, Watts NB, Ebetino FH (2007) Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 1117:209–257

    Article  CAS  PubMed  Google Scholar 

  4. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27(3):672–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saito M, Mori S, Mashiba T, Komatsubara S, Marumo K (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19(9):1343–1354. doi:10.1007/s00198-008-0585-3

    Article  CAS  PubMed  Google Scholar 

  6. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O’Keefe R, Papapoulos S, Sen HT, van der Meulen MC, Weinstein RS, Whyte M (2010) Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 25(11):2267–2294. doi:10.1002/jbmr.253

    Article  PubMed  Google Scholar 

  7. Tan SC, Koh SB, Goh SK, Howe TS (2011) Atypical femoral stress fractures in bisphosphonate-free patients. Osteoporos Int 22(7):2211–2212

    Article  PubMed  Google Scholar 

  8. Sasaki S, Miyakoshi N, Hongo M, Kasukawa Y, Shimada Y (2012) Low-energy diaphyseal femoral fractures associated with bisphosphonate use and severe curved femur: a case series. J Bone Miner Metab 30(5):561–567

    Article  PubMed  Google Scholar 

  9. Oh Y, Wakabayashi Y, Kurosa Y, Ishizuki M, Okawa A (2014) Stress fracture of the bowed femoral shaft is another cause of atypical femoral fracture in elderly Japanese: a case series. J Orthop Sci 19(4):579–586

    Article  PubMed  Google Scholar 

  10. Saita Y, Ishijima M, Mogami A, Kubota M, Baba T, Kaketa T, Nagao M, Sakamoto Y, Sakai K, Homma Y, Kato R, Nagura N, Miyagawa K, Wada T, Liu L, Matsuoka J, Obayashi O, Shitoto K, Nozawa M, Kajihara H, Gen H, Kaneko K (2014) The incidence of and risk factors for developing atypical femoral fractures in Japan. J Bone Miner Metab. doi:10.1007/s00774-014-0591-9

    Google Scholar 

  11. Saita Y, Ishijima M, Mogami A, Kubota M, Baba T, Kaketa T, Nagao M, Sakamoto Y, Sakai K, Kato R, Nagura N, Miyagawa K, Wada T, Liu L, Obayashi O, Shitoto K, Nozawa M, Kajihara H, Gen H, Kaneko K (2014) The fracture sites of atypical femoral fractures are associated with the weight-bearing lower limb alignment. Bone 66:105–110

    Article  PubMed  Google Scholar 

  12. Aspenberg P (2014) Denosumab and atypical femoral fractures. Acta Orthop 85(1):1. doi:10.3109/17453674.2013.859423

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schilcher J, Aspenberg P (2014) Atypical fracture of the femur in a patient using denosumab – a case report. Acta Orthop 85(1):6–7. doi:10.3109/17453674.2014.885355

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hagen JE, Miller AN, Ott SM, Gardner M, Morshed S, Jeray K, Alton TB, Ren D, Abblitt WP, Krieg JC (2014) Association of atypical femoral fractures with bisphosphonate use by patients with varus hip geometry. J Bone Joint Surg Am 96(22):1905–1909. doi:10.2106/JBJS.N.00075

    Article  PubMed  Google Scholar 

  15. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90(3):1294–1301. doi:jc.2004-0952 [pii] 10.1210/jc.2004-0952

    Article  CAS  PubMed  Google Scholar 

  16. Khan AA, Rios LP, Sandor GK, Khan N, Peters E, Rahman MO, Clokie CM, Dore E, Dubois S (2011) Bisphosphonate-associated osteonecrosis of the jaw in Ontario: a survey of oral and maxillofacial surgeons. J Rheumatol 38(7):1396–1402. doi:10.3899/jrheum.100221

    Article  CAS  PubMed  Google Scholar 

  17. Brown JP, Morin S, Leslie W, Papaioannou A, Cheung AM, Davison KS, Goltzman D, Hanley DA, Hodsman A, Josse R, Jovaisas A, Juby A, Kaiser S, Karaplis A, Kendler D, Khan A, Ngui D, Olszynski W, Ste-Marie LG, Adachi J (2014) Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician 60(4):324–333. doi:60/4/324 [pii]

    PubMed  PubMed Central  Google Scholar 

  18. Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster DW, Ebeling PR, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O’Keefe R, Papapoulos S, Howe TS, van der Meulen MC, Weinstein RS, Whyte MP (2014) Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res 29(1):1–23. doi:10.1002/jbmr.1998

    Article  PubMed  Google Scholar 

  19. Abrahamsen B, Eiken P, Eastell R (2009) Subtrochanteric and diaphyseal femur fractures in patients treated with alendronate: a register-based national cohort study. J Bone Miner Res 24(6):1095–1102. doi:10.1359/jbmr.081247

    Article  CAS  PubMed  Google Scholar 

  20. Abrahamsen B, Eiken P, Eastell R (2010) Cumulative alendronate dose and the long-term absolute risk of subtrochanteric and diaphyseal femur fractures: a register-based national cohort analysis. J Clin Endocrinol Metab 95(12):5258–5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsiao FY, Huang WF, Chen YM, Wen YW, Kao YH, Chen LK, Tsai YW (2011) Hip and subtrochanteric or diaphyseal femoral fractures in alendronate users: a 10-year, nationwide retrospective cohort study in Taiwanese women. Clin Ther 33(11):1659–1667

    Article  CAS  PubMed  Google Scholar 

  22. Kim SY, Schneeweiss S, Katz JN, Levin R, Solomon DH (2011) Oral bisphosphonates and risk of subtrochanteric or diaphyseal femur fractures in a population-based cohort. J Bone Miner Res 26(5):993–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Bhattacharyya T (2011) Trends in incidence of subtrochanteric fragility fractures and bisphosphonate use among the US elderly, 1996–2007. J Bone Miner Res 26(3):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abrahamsen B (2012) Atypical femur fractures: refining the clinical picture. J Bone Miner Res 27(5):975–976. doi:10.1002/jbmr.1610

    Article  PubMed  Google Scholar 

  25. Capeci CM, Tejwani NC (2009) Bilateral low-energy simultaneous or sequential femoral fractures in patients on long-term alendronate therapy. J Bone Joint Surg Am 91(11):2556–2561

    Article  PubMed  Google Scholar 

  26. Dell RM, Adams AL, Greene DF, Funahashi TT, Silverman SL, Eisemon EO, Zhou H, Burchette RJ, Ott SM (2012) Incidence of atypical nontraumatic diaphyseal fractures of the femur. J Bone Miner Res 27(12):2544–2550

    Article  PubMed  Google Scholar 

  27. Girgis CM, Sher D, Seibel MJ (2010) Atypical femoral fractures and bisphosphonate use. N Engl J Med 362(19):1848–1849, doi:362/19/1848 [pii]10.1056/NEJMc0910389

    Article  CAS  PubMed  Google Scholar 

  28. Giusti A, Hamdy NA, Dekkers OM, Ramautar SR, Dijkstra S, Papapoulos SE (2011) Atypical fractures and bisphosphonate therapy: a cohort study of patients with femoral fracture with radiographic adjudication of fracture site and features. Bone 48(5):966–971, doi:S8756-3282(10)02147-2 [pii]10.1016/j.bone.2010.12.033

    Article  CAS  PubMed  Google Scholar 

  29. Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, van der Meulen MC, Lorich DG, Lane JM (2009) Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int 20(8):1353–1362. doi:10.1007/s00198-008-0805-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lo JC, Huang SY, Lee GA, Khandelwal S, Provus J, Ettinger B, Gonzalez JR, Hui RL, Grimsrud CD (2012) Clinical correlates of atypical femoral fracture. Bone 51(1):181–184

    Article  PubMed  Google Scholar 

  31. Meier RP, Perneger TV, Stern R, Rizzoli R, Peter RE (2012) Increasing Occurrence of Atypical Femoral Fractures Associated With Bisphosphonate Use. Arch Intern Med 172(12):930–936, doi:1160667 [pii]10.1001/archinternmed.2012.1796

    Article  PubMed  Google Scholar 

  32. Schilcher J, Michaelsson K, Aspenberg P (2011) Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med 364(18):1728–1737. doi:10.1056/NEJMoa1010650

    Article  CAS  PubMed  Google Scholar 

  33. Thompson RN, Phillips JR, McCauley SH, Elliott JR, Moran CG (2012) Atypical femoral fractures and bisphosphonate treatment: experience in two large United Kingdom teaching hospitals. J Bone Joint Surg (Br) 94(3):385–390, doi:94-B/3/385 [pii]10.1302/0301-620X.94B3.27999

    Article  CAS  Google Scholar 

  34. Feldstein AC, Black D, Perrin N, Rosales AG, Friess D, Boardman D, Dell R, Santora A, Chandler JM, Rix MM, Orwoll E (2012) Incidence and demography of femur fractures with and without atypical features. J Bone Miner Res 27(5):977–986. doi:10.1002/jbmr.1550

    Article  PubMed  Google Scholar 

  35. Warren C, Gilchrist N, Coates M, Frampton C, Helmore J, McKie J, Hooper G (2012) Atypical subtrochanteric fractures, bisphosphonates, blinded radiological review. ANZ J Surg 82(12):908–912

    Article  PubMed  Google Scholar 

  36. Gedmintas L, Solomon DH, Kim SC (2013) Bisphosphonates and risk of subtrochanteric, femoral shaft, and atypical femur fracture: a systematic review and meta-analysis. J Bone Miner Res 28(8):1729–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Ward MM, Chan L, Bhattacharyya T (2014) Adherence to oral bisphosphonates and the risk of subtrochanteric and femoral shaft fractures among female medicare beneficiaries. Osteoporos Int 25(8):2109–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nieves JW, Bilezikian JP, Lane JM, Einhorn TA, Wang Y, Steinbuch M, Cosman F (2010) Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int 21(3):399–408. doi:10.1007/s00198-009-0962-6

    Article  CAS  PubMed  Google Scholar 

  39. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15(4):613–620. doi:10.1359/jbmr.2000.15.4.613

    Article  CAS  PubMed  Google Scholar 

  40. Jamal SA, Dion N, Ste-Marie LG (2011) Atypical femoral fractures and bone turnover. N Engl J Med 365(13):1261–1262

    Article  CAS  PubMed  Google Scholar 

  41. Schilcher J, Sandberg O, Isaksson H, Aspenberg P (2014) Histology of 8 atypical femoral fractures: remodeling but no healing. Acta Orthop 85(3):280–286

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ettinger B, Burr DB, Ritchie RO (2013) Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone 55(2):495–500. doi:10.1016/j.bone.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  43. Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM (2015) Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med. doi:10.1177/0363546515574066

    PubMed Central  Google Scholar 

  44. Brukner P, Bradshaw C, Khan KM, White S, Crossley K (1996) Stress fractures: a review of 180 cases. Clin J Sport Med 6(2):85–89

    Article  CAS  PubMed  Google Scholar 

  45. Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG (1987) Stress fractures in athletes. A study of 320 cases. Am J Sports Med 15(1):46–58

    Article  CAS  PubMed  Google Scholar 

  46. Orava S (1980) Stress fractures. Br J Sports Med 14(1):40–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bennell KL, Brukner PD (1997) Epidemiology and site specificity of stress fractures. Clin Sports Med 16(2):179–196

    Article  CAS  PubMed  Google Scholar 

  48. Blatz DJ (1981) Bilateral femoral and tibial shaft stress fractures in a runner. Am J Sports Med 9(5):322–325

    Article  CAS  PubMed  Google Scholar 

  49. Butler JE, Brown SL, McConnell BG (1982) Subtrochanteric stress fractures in runners. Am J Sports Med 10(4):228–232

    Article  CAS  PubMed  Google Scholar 

  50. Hershman EB, Lombardo J, Bergfeld JA (1990) Femoral shaft stress fractures in athletes. Clin Sports Med 9(1):111–119

    CAS  PubMed  Google Scholar 

  51. Masters S, Fricker P, Purdam C (1986) Stress fractures of the femoral shaft – four case studies. Br J Sports Med 20(1):14–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kang L, Belcher D, Hulstyn MJ (2005) Stress fractures of the femoral shaft in women’s college lacrosse: a report of seven cases and a review of the literature. Br J Sports Med 39(12):902–906. doi:10.1136/bjsm.2004.016626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. DeFranco MJ, Recht M, Schils J, Parker RD (2006) Stress fractures of the femur in athletes. Clin Sports Med 25 (1):89–103, ix. doi:10.1016/j.csm.2005.08.003

    Google Scholar 

  54. Gebhardt MC, Campbell CJ, Schiller AL, Mankin HJ (1985) Desmoplastic fibroma of bone. A report of eight cases and review of the literature. J Bone Joint Surg Am 67(5):732–747

    CAS  PubMed  Google Scholar 

  55. Milgrom C, Giladi M, Stein M, Kashtan H, Margulies JY, Chisin R, Steinberg R, Aharonson Z (1985) Stress fractures in military recruits. A prospective study showing an unusually high incidence. J Bone Joint Surg (Br) 67(5):732–735

    CAS  Google Scholar 

  56. Mohan PC, Howe TS, Koh JS, Png MA (2013) Radiographic features of multifocal endosteal thickening of the femur in patients on long-term bisphosphonate therapy. Eur Radiol 23(1):222–227. doi:10.1007/s00330-012-2587-y

    Article  PubMed  Google Scholar 

  57. Ivkovic A, Bojanic I, Pecina M (2006) Stress fractures of the femoral shaft in athletes: a new treatment algorithm. Br J Sports Med 40 (6):518–520; discussion 520. doi:10.1136/bjsm.2005.023655

    Google Scholar 

  58. Koh JS, Goh SK, Png MA, Ng AC, Howe TS (2011) Distribution of atypical fractures and cortical stress lesions in the femur: implications on pathophysiology. Singap Med J 52(2):77–80

    CAS  Google Scholar 

  59. Martelli S, Pivonka P, Ebeling PR (2014) Femoral shaft strains during daily activities: implications for atypical femoral fractures. Clin Biomech 29(8):869–876, 10.1016/j.clinbiomech.2014.08.001S0268-0033(14)00191-0[pii]

    Article  Google Scholar 

  60. Boonen S, Ferrari S, Miller PD, Eriksen EF, Sambrook PN, Compston J, Reid IR, Vanderschueren D, Cosman F (2012) Postmenopausal osteoporosis treatment with antiresorptives: effects of discontinuation or long-term continuation on bone turnover and fracture risk – a perspective. J Bone Miner Res 27(5):963–974. doi:10.1002/jbmr.1570

    Article  CAS  PubMed  Google Scholar 

  61. Kwek EB, Koh JS, Howe TS (2008) More on atypical fractures of the femoral diaphysis. N Engl J Med 359(3):316–317

    Article  CAS  PubMed  Google Scholar 

  62. Aamodt A, Lund-Larsen J, Eine J, Andersen E, Benum P, Husby OS (1997) In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur. J Orthop Res 15(6):927–931. doi:10.1002/jor.1100150620

    Article  CAS  PubMed  Google Scholar 

  63. Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L (1998) Influence of muscle forces on femoral strain distribution. J Biomech 31(9):841–846

    Article  CAS  PubMed  Google Scholar 

  64. Saleh A, Hegde VV, Potty AG, Schneider R, Cornell CN, Lane JM (2012) Management strategy for symptomatic bisphosphonate-associated incomplete atypical femoral fractures. HSS J 8(2):103–110, 10.1007/s11420-012-9275-y9275 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  65. Oh Y, Wakabayashi Y, Kurosa Y, Fujita K, Okawa A (2014) Potential pathogenic mechanism for stress fractures of the bowed femoral shaft in the elderly: mechanical analysis by the CT-based finite element method. Injury 45(11):1764–1771

    Article  PubMed  Google Scholar 

  66. Antapur P, Prakash D (2006) Proximal femoral geometry: a radiological assessment. J Arthroplasty 21(6):897–898. doi:10.1016/j.arth.2005.11.003

    Article  PubMed  Google Scholar 

  67. Gong H, Zhang M, Fan Y, Kwok WL, Leung PC (2012) Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. Ann Biomed Eng 40(7):1575–1585. doi:10.1007/s10439-012-0514-7

    Article  PubMed  Google Scholar 

  68. Koch J (1917) The laws of bone architecture. Am J Anat 21:177–298

    Article  Google Scholar 

  69. Taormina DP, Marcano AI, Karia R, Egol KA, Tejwani NC (2014) Symptomatic atypical femoral fractures are related to underlying hip geometry. Bone 63:1–6

    Article  PubMed  Google Scholar 

  70. Buckland-Wright JC, Macfarlane DG, Williams SA, Ward RJ (1995) Accuracy and precision of joint space width measurements in standard and macroradiographs of osteoarthritic knees. Ann Rheum Dis 54(11):872–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ravaud P, Auleley GR, Chastang C, Rousselin B, Paolozzi L, Amor B, Dougados M (1996) Knee joint space width measurement: an experimental study of the influence of radiographic procedure and joint positioning. Br J Rheumatol 35(8):761–766

    Article  CAS  PubMed  Google Scholar 

  72. Bauer GC, Insall J, Koshino T (1969) Tibial osteotomy in gonarthrosis (osteo-arthritis of the knee). J Bone Joint Surg Am 51(8):1545–1563

    CAS  PubMed  Google Scholar 

  73. Moreland JR, Bassett LW, Hanker GJ (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am 69(5):745–749

    CAS  PubMed  Google Scholar 

  74. Oka H, Muraki S, Akune T, Nakamura K, Kawaguchi H, Yoshimura N (2010) Normal and threshold values of radiographic parameters for knee osteoarthritis using a computer-assisted measuring system (KOACAD): the ROAD study. J Orthop Sci 15(6):781–789

    Article  PubMed  Google Scholar 

  75. Giusti A, Hamdy NA, Papapoulos SE (2010) Atypical fractures of the femur and bisphosphonate therapy: a systematic review of case/case series studies. Bone 47(2):169–180

    Article  CAS  PubMed  Google Scholar 

  76. Weiss RJ, Wretenberg P, Stark A, Palmblad K, Larsson P, Grondal L, Brostrom E (2008) Gait pattern in rheumatoid arthritis. Gait Posture 28(2):229–234

    Article  PubMed  Google Scholar 

  77. McCloskey E, Leslie WD (2013) Goal-directed therapy in osteoporosis. J Bone Miner Res 28(3):439–441. doi:10.1002/jbmr.1859

    Article  PubMed  Google Scholar 

  78. Cummings SR, Cosman F, Eastell R, Reid IR, Mehta M, Lewiecki EM (2013) Goal-directed treatment of osteoporosis. J Bone Miner Res 28(3):433–438. doi:10.1002/jbmr.1854

    Article  PubMed  Google Scholar 

  79. Lewiecki EM, Cummings SR, Cosman F (2013) Treat-to-target for osteoporosis: is now the time? J Clin Endocrinol Metab 98(3):946–953, 10.1210/jc.2012-3680jc.2012-3680 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was not funded by any research or training grants. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneaki Ishijima M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ishijima, M., Saita, Y., Kaneko, H., Kinoshita, M., Kaneko, K. (2016). The Geometry of Lower Extremity and Atypical Femoral Fractures. In: Shimada, Y., Miyakoshi, N. (eds) Osteoporosis in Orthopedics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55778-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55778-4_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55777-7

  • Online ISBN: 978-4-431-55778-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics