Airborne Ultrasound Tactile Display

Chapter

Abstract

The authors and colleagues invented an ultrasound-based noncontact tactile display in 2008 and have been developing this technology since then. It is suitable for gesture input systems and aerial imaging systems because no physical contact is required to provide haptic feedback. An ultrasonic phased array generates a focal point of airborne ultrasound to press the skin surface. The amplitude modulation of ultrasound provides vibrotactile stimulation covering the entire frequency range of human tactile perception. The position of the focal point is computationally controlled to follow users’ hands and/or provide a trajectory of stimulation. While this technology was originally invented as a tactile display, a wide variety of other applications has been recently reported that exploit noncontact force generated at a distance. Examples include noncontact measurement by pressing or vibrating objects, levitation and manipulation of small objects, and actuation of fragile or soft materials. The present chapter describes the background, principles, systems, and applications of this ultrasonic technology.

Keywords

Tactile display Aerial interface Airborne ultrasound Acoustic radiation pressure Phased array 

References

  1. 1.
    Rodriguez, T., de Leon, A.C., Uzzan, B., Livet, N., Boyer, E., Geffray, F., Balogh, T., Megyesi, Z., Barsi, A.: Holographic and action capture techniques. Proc. ACM SIGGRAPH 2007. Emerging Technologies, article no. 11 (2007)Google Scholar
  2. 2.
    Floating Touch Display, http://www.nict.go.jp/en/press/2009/04/15-1.html. Last accessed on 30 Apr 2015
  3. 3.
    Aerial Imaging Plate, http://aerialimaging.tv/ (in Japanese). Last accessed on 30 Apr 2015
  4. 4.
  5. 5.
    Yoshida, T., Shimizu, K., Kurogi, T., Kamuro, S., Minamizawa, K., Nii, H., Tachi, S.: RePro3D: full-parallax 3D display with haptic feedback using retro-reflective projection technology. Proc. IEEE ISVRI 2011, 49–54 (2011)Google Scholar
  6. 6.
    Kim, S.-C., Kim, C.-H., Yang, T.-H., Yang, G.-H., Kang, S.-C., Kwon, D.-S.: SaLT: small and lightweight tactile display using ultrasonic actuators. Proc. IEEE RO-MAN 2008, 430–435 (2008)Google Scholar
  7. 7.
    Suzuki, Y., Kobayashi, M.: Air jet driven force feedback in virtual reality. IEEE Comput. Graph. Appl. 25, 44–47 (2005)CrossRefGoogle Scholar
  8. 8.
    Sodhi, R., Poupyrev, I., Glisson, M., Israr, A.: AIREAL: interactive tactile experiences in free air. ACM Trans. Graphics 32, article no. 134 (2013)Google Scholar
  9. 9.
    Gupta, S., Morris, D., Patel, S.N., Tan, D.: AirWave: non-contact haptic feedback using air vortex rings. Proc. ACM Ubiquit. Comput. 2013, 419–428 (2013)Google Scholar
  10. 10.
    Iwamoto, T., Tatezono, M., Shinoda, H.: Non-contact method for producing tactile sensation using airborne ultrasound. Proc. Eur. Haptics 2008, 504–513 (2008)Google Scholar
  11. 11.
    Hasegawa, K., Shinoda, H.: Aerial display of vibrotactile sensation with high spatial-temporal resolution using large-aperture airborne ultrasound phased array. Proc. IEEE World Haptics Conf. 2013, 31–36 (2013)Google Scholar
  12. 12.
    Hoshi, T.: Handwriting transmission system using noncontact tactile display. Proc. IEEE Haptics Symp. 2012, 399–401 (2012)Google Scholar
  13. 13.
    Ciglar, M.: An ultrasound based instrument generating audible and tactile sound. Proc. NIME 2010, 19–22 (2010)Google Scholar
  14. 14.
    Alexander, J., Marshall, M.T., Subramanian, S.: Adding haptic feedback to mobile TV. CHI Extended Abstr. 2011, 1975–1980 (2011)Google Scholar
  15. 15.
    Marshall, M.T., Carter, T., Alexander, J., Subramanian, S.: Ultra-tangibles: creating movable tangible objects on interactive tables. Proc. CHI 2012, 2185–2188 (2012)Google Scholar
  16. 16.
    Carter, T., Seah, S.A., Long, B., Drinkwater, B., Subramanian, S.: UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. Proc. UIST 2013, 505–514 (2013)Google Scholar
  17. 17.
    Long, B., Seah, S.A., Carter, T., Subramanian, S.: Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans. Graph. 33, article no. 181 (2014)Google Scholar
  18. 18.
    Gavrilov, L.R., Tsirulnikov, E.M., Davies, I.a.I.: Application of focused ultrasound for the stimulation of neural structures. Ultrasound Med. Biol. 22(2), 179–192 (1996)CrossRefGoogle Scholar
  19. 19.
    Iwamoto, T., Maeda, T., Shinoda, H.: Focused ultrasound for tactile feeling display. Proc. ICAT 2001, 121–126 (2001)Google Scholar
  20. 20.
    Dalecki, D., Child, S.Z., Raeman, C.H., Carstensen, E.L.: Tactile perception of ultrasound. J. Acoust. Soc. Am. 97, 3165–3170 (1995)CrossRefGoogle Scholar
  21. 21.
    Iwamoto, T., Shinoda, H.: Two-dimensional scanning tactile display using ultrasound radiation pressure. Proc. IEEE Haptics Symp. 2006, 57–61 (2006)Google Scholar
  22. 22.
    Awatani, J.: Studies on acoustic radiation pressure. I. (General considerations). J. Acoust. Soc. Am. 27, 278–281 (1955)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hasegawa, T., Kido, T., Iizuka, T., Matsuoka, C.: A general theory of Rayleigh and Langevin radiation pressures. Acoust. Sci. Technol. 21(3), 145–152 (2000)Google Scholar
  24. 24.
    Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3(3), 155–165 (2010)CrossRefGoogle Scholar
  25. 25.
    Vallbo, Å.B., Johansson, R.S.: Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3, 3–14 (1984)Google Scholar
  26. 26.
    Bass, H.E., Sutherland, L.C., Zuckerwar, A.J., Blackstock, D.T., Hester, D.M.: Atmospheric absorption of sound: further developments. J. Acoust. Soc. Am. 97, 680–683 (1995)CrossRefGoogle Scholar
  27. 27.
    Togawa, T., Tamura, T., Öberg, P.Å.: Biomedical Transducers and Instruments. CRC Press, Boca Raton (1997)Google Scholar
  28. 28.
    Howard, C.Q., Hansen, C.H., Zander, A.C.: A review of current ultrasound exposure limits. J. Occup. Health Saf. Aust. N. Z. 21(3), 253–257 (2005)Google Scholar
  29. 29.
    Hoshi, T.: Development of portable device of airborne ultrasound tactile display. Proc. SICE Annu. Conf. 2012, 290–292 (2012)Google Scholar
  30. 30.
    Ultrasound Transducer, http://www.nicera.co.jp/pro/ut/pdf/T4010A1(ENG).pdf. Last accessed on 30 Apr 2015
  31. 31.
    Hoshi, T., Takahashi, M., Nakatsuma, K., Shinoda, H.: Touchable holography. Proc. ACM SIGGRAPH 2009, Emerging Technologies, article no. 23 (2009)Google Scholar
  32. 32.
    Monnai, Y., Hasegawa, K., Fujiwara, M., Inoue, S., Shinoda, H.: HaptoMime: mid-air haptic interactions with a floating virtual screen. Proc. ACM UIST 2014, 663–667 (2014)Google Scholar
  33. 33.
    Inoue, K.K., Kirschvinkand, Y., Monnai, K., Hasegawa, Y., Makino, Shinoda, H.: HORN: the hapt-optic reconstruction. Proc. ACM SIGGRAPH 2014, Emerging Technologies, article no. 11 (2014)Google Scholar
  34. 34.
    Fujiwara, M., Nakatsuma, K., Takahashi, M., Shinoda, H.: Remote measurement of surface compliance distribution using ultrasound radiation pressure. Proc. World Haptics Conf. 2011, 43–47 (2011)Google Scholar
  35. 35.
    Kikunaga, K., Hoshi, T., Yamashita, H., Fujii, Y., Nonaka, K.: Measuring technique for static electricity using focused sound. J. Electrost. 71(3), 554–557 (2012)CrossRefGoogle Scholar
  36. 36.
    Hung, G.M.Y., John, N.W., Hancock, C., Gould, D.A., Hoshi, T.: UltraPulse – simulating arterial pulse with focused airborne ultrasound. Proc. EMBC 2013, 2511–2514 (2013)Google Scholar
  37. 37.
    Kono, M., Hoshi, T., Kakehi, Y.: Lapillus bug: creature-like behaving particles based on interactive mid-air acoustic manipulation. Proc. ACE 2014, article no. 34 (2014)Google Scholar
  38. 38.
    Ochiai, Y., Oyama, A., Hoshi, T., Rekimoto, J.: The colloidal metamorphosis: time division multiplexing of the reflectance state. IEEE Comput. Graph. Appl. 34(4), 42–51 (2014)CrossRefGoogle Scholar
  39. 39.
    Hoshi, Ochiai, Y., Rekimoto, J.: Three-dimensional noncontact manipulation by opposite ultrasonic phased arrays. Jpn. J. Appl. Phys. 53, 07KE07 (2014)CrossRefGoogle Scholar
  40. 40.
    Ochiai, Y., Hoshi, T., Rekimoto, J.: Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans. Graph. 33, article no. 85 (2014)Google Scholar
  41. 41.
    Sugiura, Y., Toda, K., Hoshi, T., Kamiyama, Y., Inami, M., Igarashi, T.: Graffiti Fur: turning your carpet into a computer display. Proc. ACM UIST 2014, 149–156 (2014)Google Scholar
  42. 42.
    Shimizu, H., Nakamura, K., Hoshi, T., Nakashima, H., Miyasaka, J., Ohdoi, K.: Development of a non-contact ultrasonic pollination system. Proc. CIOSTA 2015, paper ID 43 (2015)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Nagoya Institute of TechnologyNagoyaJapan
  2. 2.The University of TokyoTokyoJapan

Personalised recommendations