Aging-Related Neurodegenerative Diseases in Caenorhabditis elegans

  • Dong Kyu Kim
  • Seung-Jae LeeEmail author


Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, are aging-dependent. As aged population grows, neurodegenerative diseases have become the major threats to human health and serious social burdens worldwide. Recently, research in neurodegenerative diseases has entered the Renaissance age, as several genes responsible for the diseases were identified. In this chapter, we explain why Caenorhabditis elegans (C. elegans) is an excellent animal model for the studies on neurodegenerative diseases and describe how this animal model has contributed to understanding of the mechanism of the diseases. Several features of C. elegans make it a particularly useful model for searching for genetic modifiers of disease phenotypes and for investigating the role of aging in disease development and progression.


Neurodegenerative diseases Caenorhabditis elegans Aging Protein aggregation Alzheimer’s disease Parkinson’s disease Huntington’s disease Amyotrophic lateral sclerosis 



This work was supported by the National Research Foundation (NRF) grant funded by the Korean Government (MEST) (No. 2010-0015188), and the Korea Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI14C0093).


  1. Ash PE, Zhang YJ, Roberts CM, Saldi T, Hutter H, Buratti E, Petrucelli L, Link CD (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19(16):3206–3218PubMedCentralCrossRefPubMedGoogle Scholar
  2. Boccitto M, Lamitina T, Kalb RG (2012) Daf-2 signaling modifies mutant SOD1 toxicity in C. elegans. PLoS One 7(3):e33494PubMedCentralCrossRefPubMedGoogle Scholar
  3. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedCentralPubMedGoogle Scholar
  4. Cao S, Gelwix CC, Caldwell KA, Caldwell GA (2005) Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 25(15):3801–3812. doi: 10.1523/JNEUROSCI.5157-04.2005 CrossRefPubMedGoogle Scholar
  5. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610. doi: 10.1126/science.1124646 CrossRefPubMedGoogle Scholar
  6. Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9(6):869–877CrossRefPubMedGoogle Scholar
  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi: 10.1038/35888 CrossRefPubMedGoogle Scholar
  8. Gidalevitz T, Krupinski T, Garcia S, Morimoto RI (2009) Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet 5(3):e1000399PubMedCentralCrossRefPubMedGoogle Scholar
  9. Hall DH, Lints R, Altun Z (2006) Nematode neurons: anatomy and anatomical methods in Caenorhabditis elegans. Int Rev Neurobiol 69:1–35. doi: 10.1016/S0074-7742(05)69001-0 CrossRefPubMedGoogle Scholar
  10. Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 105(2):728–733. doi: 10.1073/pnas.0711018105 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA (2010) C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn: Off Publ Am Assoc Anat 239(5):1282–1295. doi: 10.1002/dvdy.22231 Google Scholar
  12. Hart AC, Sims S, Kaplan JM (1995) Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378(6552):82–85. doi: 10.1038/378082a0 CrossRefPubMedGoogle Scholar
  13. Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399(6734):362–366. doi: 10.1038/20694 CrossRefPubMedGoogle Scholar
  14. Jia K, Hart AC, Levine B (2007) Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy 3(1):21–25CrossRefPubMedGoogle Scholar
  15. Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi: 10.1038/nature08980 CrossRefPubMedGoogle Scholar
  16. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD (2003) Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci U S A 100(17):9980–9985. doi: 10.1073/pnas.1533448100 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W (2000) Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10(5):703–713PubMedCentralCrossRefPubMedGoogle Scholar
  18. Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19(6):1912–1921PubMedGoogle Scholar
  19. Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol: CB 11(24):1950–1957CrossRefPubMedGoogle Scholar
  20. Li J, Huang KX, Le WD (2013) Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis. Acta Pharmacol Sin 34(5):644–50PubMedCentralCrossRefPubMedGoogle Scholar
  21. Liachko NF, Guthrie CR, Kraemer BC (2010) Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci 30(48):16208–16219. doi: 10.1523/JNEUROSCI.2911-10 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 92(20):9368–9372PubMedCentralCrossRefPubMedGoogle Scholar
  23. Link CD (2001) Transgenic invertebrate models of age-associated neurodegenerative diseases. Mech Ageing Dev 122(14):1639–1649CrossRefPubMedGoogle Scholar
  24. Maricq AV, Peckol E, Driscoll M, Bargmann CI (1995) Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378(6552):78–81. doi: 10.1038/378078a0 CrossRefPubMedGoogle Scholar
  25. McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5(3):155–171; discussion 172PubMedGoogle Scholar
  26. McIntire SL, Jorgensen E, Kaplan J, Horvitz HR (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364(6435):337–341. doi: 10.1038/364337a0 CrossRefPubMedGoogle Scholar
  27. Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10(12):3959–3970PubMedCentralPubMedGoogle Scholar
  28. Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99(16):10417–10422. doi: 10.1073/pnas.152161099 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Nonet ML, Saifee O, Zhao H, Rand JB, Wei L (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18(1):70–80PubMedGoogle Scholar
  30. Oeda T, Shimohama S, Kitagawa N, Kohno R, Imura T, Shibasaki H, Ishii N (2001) Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Hum Mol Genet 10(19):2013–2023CrossRefPubMedGoogle Scholar
  31. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) Introduction to C. elegans. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  32. Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J, Hsu CH, Segal L, Raghavan K, Matsumoto K, Hisamoto N, Kuwahara T, Iwatsubo T, Moore L, Goldstein L, Cookson M, Wolozin B (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29(29):9210–9218. doi: 10.1523/JNEUROSCI.2281-09.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N (2007) LRK-1, a C. elegans PARK8-related kinase, regulatesaxonal-dendritic polarity of SV proteins. Curr Biol 17(7):592–598CrossRefPubMedGoogle Scholar
  34. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 97(11):5750–5755. doi: 10.1073/pnas.100107297 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Springer W, Hoppe T, Schmidt E, Baumeister R (2005) A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. Hum Mol Genet 14(22):3407–3423. doi: 10.1093/hmg/ddi371 CrossRefPubMedGoogle Scholar
  36. Sulston JE (1983) Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 48(Pt 2):443–452CrossRefPubMedGoogle Scholar
  37. Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163(2):215–226. doi: 10.1002/cne.901630207 CrossRefPubMedGoogle Scholar
  38. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119CrossRefPubMedGoogle Scholar
  39. Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282(5388):430–431CrossRefPubMedGoogle Scholar
  40. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395(6705):854. doi: 10.1038/27579 CrossRefPubMedGoogle Scholar
  41. To’th ML, Sigmond T, Borsos E, Barna J, Erde’lyi P, Taka’cs-Vellai K, Orosz L, Kova’cs AL, Csiko’s G, Sass M, Vellai T (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4(3):330–338CrossRefGoogle Scholar
  42. van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4(3):e1000027. doi: 10.1371/journal.pgen.1000027 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Waggoner LE, Zhou GT, Schafer RW, Schafer WR (1998) Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron 21(1):203–214CrossRefPubMedGoogle Scholar
  44. Wang J, Farr GW, Hall DH, Li F, Furtak K, Dreier L, Horwich AL (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5(1):e1000350PubMedCentralCrossRefPubMedGoogle Scholar
  45. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340CrossRefPubMedGoogle Scholar
  46. Yao C, El Khoury R, Wang W, Byrd TA, Pehek EA, Thacker C, Zhu X, Smith MA, Wilson-Delfosse AL, Chen SG (2010) LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson's disease. Neurobiol Dis 40(1):73–81PubMedCentralCrossRefPubMedGoogle Scholar
  47. Zhang T, Mullane PC, Periz G, Wang J (2011) TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Hum Mol Genet 20(10):1952–1965PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Neuroscience Research Institute and Department of MedicineSeoul National University College of MedicineSeoulKorea
  2. 2.Department of Biomedical Science and TechnologyKonkuk UniversitySeoulKorea

Personalised recommendations