Oxidative Stress and C. elegans Models

  • Naoaki IshiiEmail author
  • Takamasa Ishii
  • Philip S. Hartman


Oxidative stress is thought to be an important contributor to cellular and organismal aging. While there are many reports that support this notion, some recent evidence using transgenic animals indicates that oxidative defense systems, including antioxidant enzymes, may not affect life extension. This leads to speculation that oxidative stress does not play a major role in aging. However, it is difficult to ascertain the role of oxidative stress on aging under complex mechanisms of ROS production and the defense systems in normal cells that maintain a favorable redox balance. The nematode Caenorhabditis elegans has gained widespread favor for the study of many biological processes, including aging. Several lines of C. elegans research relating to oxidative stress and aging are discussed in this review, including the use of transgenic organisms with altered superoxide dismutase levels as well as studies that focus on mitochondrial mutations.


Caenorhabditis elegans Aging Oxidative stress Reactive oxygen species Electron transport 


  1. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219CrossRefPubMedGoogle Scholar
  2. Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol A Biol Sci Med Sci 53:B240–B244CrossRefPubMedGoogle Scholar
  3. Anderson WM, Trgovcich-Zacok D (1995) Carbocyanine dyes with long alkyl side-chains: broad spectrum inhibitors of mitochondrial electron transport chain activity. Biochem Pharmacol 49:1303–1131CrossRefPubMedGoogle Scholar
  4. Attardi G, Schatz G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4:289–333CrossRefPubMedGoogle Scholar
  5. Back P, Braeckman BP, Matthijssens F (2012) ROS in aging Caenorhabditis elegans: damage or signaling? Oxidative Med Cell Longev. Vol 2012, Article ID 608478, p. 14Google Scholar
  6. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedCentralPubMedGoogle Scholar
  7. Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D (2011) Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51:1575–1582PubMedCentralCrossRefPubMedGoogle Scholar
  8. Cecchini G (2003) Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77–109CrossRefPubMedGoogle Scholar
  9. Cecchini G, Maklashina E, Yankovskaya V, Iverson TM, Iwata S (2003) Variation in proton donor/acceptor pathways in succinate: quinone oxidoreductases. FEBS Lett 545:31–38CrossRefPubMedGoogle Scholar
  10. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–589PubMedGoogle Scholar
  11. Clancy D, Birdsall J (2013) Flies, worms and the free radical theory of ageing. Ageing Res Rev 12:404–412CrossRefPubMedGoogle Scholar
  12. Collins AR, Duthie SJ, Fillion L, Gedik CM, Vaughan N, Wood SG (1997) Oxidative DNA damage in human cells: the influence of antioxidants and DNA repair. Biochem Soc Trans 25:326–331CrossRefPubMedGoogle Scholar
  13. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harman D (1987) Oxygen radicals and diseases. Ann Intern Med 107:526–545CrossRefPubMedGoogle Scholar
  14. Cutler RG (1985) Antioxidants and longevity of mammalian species. In: Woodhead AD, Blackett AD, Hollaender A (eds) Molecular biology of aging. Plenum Press, New York/London, pp 15–73CrossRefGoogle Scholar
  15. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specific by mitochondrial function during development. Science 298:2398–2401CrossRefPubMedGoogle Scholar
  16. Dingley S, Polyak E, Lightfoot R, Ostrovsky J, Rao M, Greco T, Ischiropoulos H, Falk MJ (2010) Mitochondrial respiratory chain dysfunction variably increases oxidant stress in Caenorhabditis elegans. Mitochondrion 10:125–136PubMedCentralCrossRefPubMedGoogle Scholar
  17. Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22:3236–3241PubMedCentralCrossRefPubMedGoogle Scholar
  18. Epstein HF, Shakes DC (1995) Methods in cell biology. Academic, San DiegoGoogle Scholar
  19. Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644CrossRefPubMedGoogle Scholar
  20. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefPubMedGoogle Scholar
  21. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330CrossRefPubMedGoogle Scholar
  22. Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8:1681–1697CrossRefPubMedGoogle Scholar
  23. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262CrossRefPubMedGoogle Scholar
  24. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300CrossRefPubMedGoogle Scholar
  25. Hartman PS, Ishii N, Kayser EB, Morgan PG, Sedensky MM (2001) Mitochondrial mutations differentially affect aging, mutability and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 122:1187–1201CrossRefPubMedGoogle Scholar
  26. Holiday R (1997) Understanding aging. Philos Trans R Soc Lond B Biol Sci 352:1793–1797CrossRefGoogle Scholar
  27. Honda S, Ishii N, Suzuki K, Matsuo M (1993) Oxygen-dependent perturbation of life span and aging rate in the nematode. J Gerontol Ser A Biol Sci Med Sci 48:B57–B61Google Scholar
  28. Honda Y, Tanaka M, Honda S (2008) Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. Exp Gerontol 43:520–529CrossRefPubMedGoogle Scholar
  29. Honda Y, Tanaka M, Honda S (2010) Redox regulation, gene expression and longevity. Geriatr Gerontol Int 10(Suppl 1):S59–S69CrossRefPubMedGoogle Scholar
  30. Hosokawa H, Ishii N, Ishida H, Ichimori K, Nakazawa H, Suzuki K (1994) Rapid accumulation of fluorescent material with aging in an oxygen-sensitive mutant mev-1 of Caenorhabditis elegans. Mech Ageing Dev 74:161–170CrossRefPubMedGoogle Scholar
  31. Houthoofd K, Vanfleteren JR (2007) Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 277:601–617CrossRefPubMedGoogle Scholar
  32. Huang J, Lemire BD (2009) Mutations in the C. elegans succinate dehydrogenase iron–sulfur subunit promote superoxide generation and premature aging. J Mol Biol 387:559–569CrossRefPubMedGoogle Scholar
  33. Ishii N, Hartman PS (2003) Electron transport and life span in C. elegans. In: Mattson MP (ed) Energy metabolism and lifespan determination. Vol 14, Elsevier, Baltimore, pp 177–195Google Scholar
  34. Ishii N, Takahashi T, Tomita S, Keino T, Honda S, Yoshino K, Suzuki K (1990) A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res 237:165–171CrossRefPubMedGoogle Scholar
  35. Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394:694–697CrossRefPubMedGoogle Scholar
  36. Ishii N, Goto S, Hartman PS (2002) Protein oxidation during aging of the nematode Caenorhabditis elegans. Free Radic Biol Med 33:1021–1025CrossRefPubMedGoogle Scholar
  37. Ishii N, Ishii T, Hartman PS (2006) The role of the electron transport gene SDHC on lifespan and cancer. Exp Gerontol 41:952–956CrossRefPubMedGoogle Scholar
  38. Ishii T, Miyazawa M, Onouchi H, Yasuda K, Hartman PS, Ishii N (2013) Model animals for the study of oxidative stress from complex II. Biochim Biophys Acta 1827:588–597CrossRefPubMedGoogle Scholar
  39. Jazwinski SM (1996) Longevity, genes, and aging. Science 273:54–59CrossRefPubMedGoogle Scholar
  40. Kayser EB, Morgan PG, Sedensky MM (1999) GAS-1: a mitochondrial protein controls sensitivity to volatile anesthetics in the nematode Caenorhabditis elegans. Anesthesiology 90:545–554CrossRefPubMedGoogle Scholar
  41. Kayser EB, Morgan PG, Hoppel CL, Sedensky MM (2001) Mitochondrial expression and function of GAS-1 in Caenorhabditis elegans. J Biol Chem 276:20551–20558CrossRefPubMedGoogle Scholar
  42. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512CrossRefPubMedGoogle Scholar
  43. Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013CrossRefPubMedGoogle Scholar
  44. Larsen PL, Clarke CF (2002) Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 295:120–123Google Scholar
  45. Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screening identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48CrossRefPubMedGoogle Scholar
  46. Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366:53–67CrossRefPubMedGoogle Scholar
  47. Leonard JV, Schapira AH (2000) Mitochondrial respiratory chain disorders: I. mitochondrial DNA defects. Lancet 355:299–304CrossRefPubMedGoogle Scholar
  48. Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4CrossRefPubMedGoogle Scholar
  49. Maklashina E, Cecchini G (2010) The quinone-binding and catalytic site of complex II. Biochim Biophys Acta 1797:1877–1882PubMedCentralCrossRefPubMedGoogle Scholar
  50. Miyadera H, Amino H, Hiraishi A, Taka H, Murayama K, Miyoshi H, Sakamoto K, Ishii N, Hekimi S, Kita K (2001) Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 276:7713–7716CrossRefPubMedGoogle Scholar
  51. Morgan PG, Sedensky MM (1994) Mutations conferring new patterns of sensitivity to volatile anesthetics in Caenorhabditis elegans. Anesthesiology 81:888–898CrossRefPubMedGoogle Scholar
  52. Murfitt RR, Vogel K, Sanadi DR (1976) Characterization of the mitochondria of the free-living nematode, Caenorhabditis elegans. Comp Biochem Physiol B 53:423–430PubMedGoogle Scholar
  53. Nohl H, Hegner D (1978) Do mitochondria produce oxygen radicals in vivo? Eur J Biochem 82:563–567CrossRefPubMedGoogle Scholar
  54. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471–498PubMedCentralPubMedGoogle Scholar
  55. Orr WC, Sohal RS (1994) Extension of life span by over expression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130CrossRefPubMedGoogle Scholar
  56. Raamsdonk JM, Van Hekimi S (2009) Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet 5(2), e1000361PubMedCentralCrossRefPubMedGoogle Scholar
  57. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508CrossRefPubMedGoogle Scholar
  58. Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I (2014) Antioxidants and human diseases. Clin Chim Acta 436:332–347CrossRefPubMedGoogle Scholar
  59. Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Rev 49:618–632CrossRefPubMedGoogle Scholar
  60. Riddle DL, Blumenthal T, Mayer BJ, Priess JR (1997) C. elegans II. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  61. Senoo-Matsuda N, Yasuda K, Tsuda M, Ohkubo T, Yoshimura S, Nakazawa H, Hartman PS, Ishii N (2001) A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 276:41553–41558CrossRefPubMedGoogle Scholar
  62. Senoo-Matsuda N, Hartman PS, Akatsuka A, Yoshimura S, Ishii N (2003) A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J Biol Chem 278:22031–22036CrossRefPubMedGoogle Scholar
  63. Spoerri PE, Glass P, Ghazzawi PE (1974) Accumulation of lipofuscin in the myocardium of senile guinia pigs; dissolution and removal of lipofuscin following dimethylaminoethyl p-chloroohenoxyacetate administration. An electron microscopy study. Mech Ageing Dev 3:311–321CrossRefPubMedGoogle Scholar
  64. Stadman ER (1992) Protein oxidation and aging. Science 257:1220–1224CrossRefGoogle Scholar
  65. Stadman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. J Biol Chem 266:2005–2008Google Scholar
  66. Strehler BL, Mark DD, Mildvan AS, Gee MV (1959) Rate and magnitude of age pigment accumulation in the human myocardium. J Gerontol 14:257–264CrossRefGoogle Scholar
  67. Sulston JE (1988) Cell lineage. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, New York, pp 123–155Google Scholar
  68. Sulston JE, Horvitz HR (1977) Post embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156CrossRefPubMedGoogle Scholar
  69. Sulston JE, Schiernberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119CrossRefPubMedGoogle Scholar
  70. Tahara EB, Navarete FDT, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46:1283–1297CrossRefPubMedGoogle Scholar
  71. Tolmasoff JM, Ono T, Cutler RG (1980) Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species. Proc Natl Acad Sci 77:2777–2781PubMedCentralCrossRefPubMedGoogle Scholar
  72. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8CrossRefPubMedGoogle Scholar
  73. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefPubMedGoogle Scholar
  74. Vuillaume M (1987) Reduced oxygen species, mutation, induction and cancer initiation. Mutat Res 186:43–72CrossRefPubMedGoogle Scholar
  75. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488CrossRefPubMedGoogle Scholar
  76. Wood WB (1988a) Embryology. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, New York, pp 215–241Google Scholar
  77. Wood WB (1988b) Aging of C. elegans: mosaics and mechanisms. Cell 95:147–150CrossRefGoogle Scholar
  78. Xu X, Matsuno-Yagi A, Yagi T (1992) Gene cluster of the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans: characterization of four structural gene products. Biochemistry 31:6925–6932CrossRefPubMedGoogle Scholar
  79. Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8(12), e1000556PubMedCentralCrossRefPubMedGoogle Scholar
  80. Yang W, Li JJ, Hekimi S (2007) A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177:2063–2074PubMedCentralCrossRefPubMedGoogle Scholar
  81. Yen K, Patel HB, Lublin AL, Mobbs CV (2009) SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, butmutational inactivation of SOD-1 reduces life extension by cold. Mech Ageing Dev 130:173–178CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Naoaki Ishii
    • 1
    Email author
  • Takamasa Ishii
    • 1
  • Philip S. Hartman
    • 2
  1. 1.Department of Molecular Life ScienceTokai University School of MedicineIsehara, KanagawaJapan
  2. 2.Department of BiologyTexas Christian UniversityFort WorthUSA

Personalised recommendations