Advertisement

Cellular Longevity of Budding Yeast During Replicative and Chronological Aging

  • Kyung-Mi Choi
  • Cheol-Koo LeeEmail author

Abstract

Mechanisms of aging and its retardation are evolutionarily conserved from unicellular to multicellular organisms. Several laboratory models, including budding yeast, have contributed to a better understanding of the complexity of aging and longevity. Budding yeast gradually loses the ability of producing daughter cells in rich media, and then loses viability in exhausted media during the aging process. According to these distinguishable losses, there are two measurable lifespans in budding yeast: replicative life span (RLS) and chronological life span (CLS). These two types of lifespans share common longevity-regulating pathways, such as Target of Rapamycin (TOR) signaling, and have non-overlapping pathways between chronologically long-lived mutants and replicatively long-lived mutants. CLS and RLS can be extended through genetic mutation, caloric restriction, and chemical treatment (e.g., rapamycin). We reviewed methodological properties of CLS and RLS, and discussed genes related to these lifespans. Particularly, we focused on two genes, Sir2 and Tor1, in context of their association with replicative and chronological cellular aging. We also described novel genes and primary biological processes responsible for cellular longevity from genome-wide studies.

Keywords

Budding yeast Replicative life span Chronological life span Target of Rapamycin (TOR) Sirtuin Genome-wide screening Microarray 

Notes

Acknowledgments

This work was supported by the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01053302)” of the Rural Development Administration, Republic of Korea, and by a Korea University Grant.

References

  1. Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299(5613):1751–1753. doi: 10.1126/science.1080418 PubMedCrossRefGoogle Scholar
  2. Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174(1):89–100. doi: 10.1083/jcb.200604072 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Alvers AL, Fishwick LK, Wood MS, Hu D, Chung HS, Dunn WA Jr, Aris JP (2009) Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8(4):353–369. doi: 10.1111/j.1474-9726.2009.00469.x PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423(6936):181–185. doi: 10.1038/nature01578 PubMedCrossRefGoogle Scholar
  5. Aris JP, Alvers AL, Ferraiuolo RA, Fishwick LK, Hanvivatpong A, Hu D, Kirlew C, Leonard MT, Losin KJ, Marraffini M, Seo AY, Swanberg V, Westcott JL, Wood MS, Leeuwenburgh C, Dunn WA Jr (2013) Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Exp Gerontol 48(10):1107–1119. doi: 10.1016/j.exger.2013.01.006 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Armstrong CM, Kaeberlein M, Imai SI, Guarente L (2002) Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity. Mol Biol Cell 13(4):1427–1438. doi: 10.1091/mbc.01-10-0482 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Avalos JL, Bever KM, Wolberger C (2005) Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 17(6):855–868. doi: 10.1016/j.molcel.2005.02.022 PubMedCrossRefGoogle Scholar
  8. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277(47):45099–45107. doi: 10.1074/jbc.M205670200 PubMedCrossRefGoogle Scholar
  9. Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5(4):265–277. doi: 10.1016/j.cmet.2007.02.009 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8(8):1256–1270PubMedCentralPubMedCrossRefGoogle Scholar
  11. Burtner CR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M (2011) A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle 10(9):1385–1396PubMedCentralPubMedCrossRefGoogle Scholar
  12. Casatta N, Porro A, Orlandi I, Brambilla L, Vai M (2013) Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors. Biochim Biophys Acta 1833(3):593–601. doi: 10.1016/j.bbamcr.2012.11.008 PubMedCrossRefGoogle Scholar
  13. Cheng C, Fabrizio P, Ge H, Longo VD, Li LM (2007a) Inference of transcription modification in long-live yeast strains from their expression profiles. BMC Genomics 8:219. doi: 10.1186/1471-2164-8-219 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Cheng C, Fabrizio P, Ge H, Wei M, Longo VD, Li LM (2007b) Significant and systematic expression differentiation in long-lived yeast strains. PLoS One 2(10):e1095. doi: 10.1371/journal.pone.0001095 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Choi JS, Lee CK (2013) Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Biochem Biophys Res Commun 439(1):126–131. doi: 10.1016/j.bbrc.2013.08.014 PubMedCrossRefGoogle Scholar
  16. Choi JS, Choi KM, Lee CK (2011) Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochem Biophys Res Commun 409(2):308–314. doi: 10.1016/j.bbrc.2011.05.008 PubMedCrossRefGoogle Scholar
  17. Choi KM, Kwon YY, Lee CK (2013a) Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp Gerontol 48(12):1455–1468. doi: 10.1016/j.exger.2013.10.001 PubMedCrossRefGoogle Scholar
  18. Choi KM, Lee HL, Kwon YY, Kang MS, Lee SK, Lee CK (2013b) Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast. Biochem Biophys Res Commun 441(1):236–242. doi: 10.1016/j.bbrc.2013.10.049 PubMedCrossRefGoogle Scholar
  19. Choi K, Kwon Y, Lee C (2014) Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett. doi: 10.1016/j.febslet.2014.12.020 Google Scholar
  20. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459(7248):802–807. doi: 10.1038/nature08085 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Delori FC, Dorey CK (1998) In vivo technique for autofluorescent lipopigments. Methods Mol Biol 108:229–243. doi: 10.1385/0-89603-472-0:229 PubMedGoogle Scholar
  22. Egilmez NK, Jazwinski SM (1989) Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. J Bacteriol 171(1):37–42PubMedCentralPubMedGoogle Scholar
  23. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314. doi: 10.1038/ncb1975 PubMedCrossRefGoogle Scholar
  24. Emre NC, Ingvarsdottir K, Wyce A, Wood A, Krogan NJ, Henry KW, Li K, Marmorstein R, Greenblatt JF, Shilatifard A, Berger SL (2005) Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell 17(4):585–594. doi: 10.1016/j.molcel.2005.01.007 PubMedCrossRefGoogle Scholar
  25. Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21(19):2410–2421. doi: 10.1101/gad.439307 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD (2005) Sir2 blocks extreme life-span extension. Cell 123(4):655–667. doi: 10.1016/j.cell.2005.08.042 PubMedCrossRefGoogle Scholar
  27. Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, Longo VD (2010) Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6(7):e1001024. doi: 10.1371/journal.pgen.1001024 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Fadri M, Daquinag A, Wang S, Xue T, Kunz J (2005) The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell 16(4):1883–1900. doi: 10.1091/mbc.E04-07-0564 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Gallo CM, Smith DL Jr, Smith JS (2004) Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol Cell Biol 24(3):1301–1312PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ganley AR, Ide S, Saka K, Kobayashi T (2009) The effect of replication initiation on gene amplification in the rDNA and its relationship to aging. Mol Cell 35(5):683–693. doi: 10.1016/j.molcel.2009.07.012 PubMedCrossRefGoogle Scholar
  31. Garay E, Campos SE, Gonzalez de la Cruz J, Gaspar AP, Jinich A, Deluna A (2014) High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet 10(2):e1004168. doi: 10.1371/journal.pgen.1004168 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Ge H, Wei M, Fabrizio P, Hu J, Cheng C, Longo VD, Li LM (2010) Comparative analyses of time-course gene expression profiles of the long-lived sch9Delta mutant. Nucleic Acids Res 38(1):143–158. doi: 10.1093/nar/gkp849 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Gottlieb S, Esposito RE (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56(5):771–776PubMedCrossRefGoogle Scholar
  34. Ha CW, Huh WK (2011) Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae. Nucleic Acids Res 39(4):1336–1350. doi: 10.1093/nar/gkq895 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Ha CW, Kim K, Chang YJ, Kim B, Huh WK (2014) The beta-1,3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae. Nucleic Acids Res 42(13):8486–8499. doi: 10.1093/nar/gku570 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Hardy CF, Sussel L, Shore D (1992) A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev 6(5):801–814PubMedCrossRefGoogle Scholar
  37. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300PubMedCrossRefGoogle Scholar
  38. Harman D (1992) Free radical theory of aging. Mutat Res 275(3–6):257–266PubMedCrossRefGoogle Scholar
  39. Hoffmann J, Romey R, Fink C, Yong L, Roeder T (2013) Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila. Aging 5(4):315–327PubMedCentralPubMedGoogle Scholar
  40. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196. doi: 10.1038/nature01960 PubMedCrossRefGoogle Scholar
  41. Hu J, Wei M, Mirisola MG, Longo VD (2013) Assessing chronological aging in Saccharomyces cerevisiae. Methods Mol Biol 965:463–472. doi: 10.1007/978-1-62703-239-1_30 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Hu J, Wei M, Mirzaei H, Madia F, Mirisola M, Amparo C, Chagoury S, Kennedy B, Longo VD (2014) Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity. Aging Cell 13(3):457–467. doi: 10.1111/acel.12202 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Huberts DH, Gonzalez J, Lee SS, Litsios A, Hubmann G, Wit EC, Heinemann M (2014) Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 111(32):11727–11731. doi: 10.1073/pnas.1410024111 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87(4):1175–1213. doi: 10.1152/physrev.00047.2006 PubMedCrossRefGoogle Scholar
  45. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, Kennedy BK (2005a) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280(17):17038–17045. doi: 10.1074/jbc.M500655200 PubMedCrossRefGoogle Scholar
  47. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005b) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193–1196. doi: 10.1126/science.1115535 PubMedCrossRefGoogle Scholar
  48. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150(6):1507–1513PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30(4):1049–1058. doi: 10.1128/MCB.01344-09 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kamei Y, Tamada Y, Nakayama Y, Fukusaki E, Mukai Y (2014) Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast. J Biol Chem 289(46):32081–32093. doi: 10.1074/jbc.M114.600528 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol: CB 14(10):885–890. doi: 10.1016/j.cub.2004.03.059 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447. doi: 10.1016/j.cell.2005.01.027 PubMedCrossRefGoogle Scholar
  53. Koch MR, Pillus L (2009) The glucanosyltransferase Gas1 functions in transcriptional silencing. Proc Natl Acad Sci U S A 106(27):11224–11229. doi: 10.1073/pnas.0900809106 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Laschober GT, Ruli D, Hofer E, Muck C, Carmona-Gutierrez D, Ring J, Hutter E, Ruckenstuhl C, Micutkova L, Brunauer R, Jamnig A, Trimmel D, Herndler-Brandstetter D, Brunner S, Zenzmaier C, Sampson N, Breitenbach M, Frohlich KU, Grubeck-Loebenstein B, Berger P, Wieser M, Grillari-Voglauer R, Thallinger GG, Grillari J, Trajanoski Z, Madeo F, Lepperdinger G, Jansen-Durr P (2010) Identification of evolutionarily conserved genetic regulators of cellular aging. Aging Cell 9(6):1084–1097. doi: 10.1111/j.1474-9726.2010.00637.x PubMedCentralPubMedCrossRefGoogle Scholar
  55. Laun P, Ramachandran L, Jarolim S, Herker E, Liang P, Wang J, Weinberger M, Burhans DT, Suter B, Madeo F, Burhans WC, Breitenbach M (2005) A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res 5(12):1261–1272. doi: 10.1016/j.femsyr.2005.07.006 PubMedCrossRefGoogle Scholar
  56. Lee YL, Lee CK (2008) Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Mol Cells 26(3):299–307PubMedGoogle Scholar
  57. Lee SS, Avalos Vizcarra I, Huberts DH, Lee LP, Heinemann M (2012) Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci U S A 109(13):4916–4920. doi: 10.1073/pnas.1113505109 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Lesur I, Campbell JL (2004) The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol Biol Cell 15(3):1297–1312. doi: 10.1091/mbc.E03-10-0742 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487):2126–2128PubMedCrossRefGoogle Scholar
  60. Lin SS, Manchester JK, Gordon JI (2001) Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem 276(38):36000–36007. doi: 10.1074/jbc.M103509200 PubMedCrossRefGoogle Scholar
  61. Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18(1):12–16. doi: 10.1101/gad.1164804 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Lindstrom DL, Gottschling DE (2009) The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics 183(2):413–422. doi: 10.1534/genetics.109.106229, 411SI-413SIPubMedCentralPubMedCrossRefGoogle Scholar
  63. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468PubMedCrossRefGoogle Scholar
  64. Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271(21):12275–12280PubMedCrossRefGoogle Scholar
  65. Madeo F, Tavernarakis N, Kroemer G (2010) Can autophagy promote longevity? Nat Cell Biol 12(9):842–846. doi: 10.1038/ncb0910-842 PubMedCrossRefGoogle Scholar
  66. Matecic M, Smith DL, Pan X, Maqani N, Bekiranov S, Boeke JD, Smith JS (2010) A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6(4):e1000921. doi: 10.1371/journal.pgen.1000921 PubMedCentralPubMedCrossRefGoogle Scholar
  67. McCormick MA, Mason AG, Guyenet SJ, Dang W, Garza RM, Ting MK, Moller RM, Berger SL, Kaeberlein M, Pillus L, La Spada AR, Kennedy BK (2014) The SAGA histone deubiquitinase module controls yeast replicative lifespan via Sir2 interaction. Cell Rep 8(2):477–486. doi: 10.1016/j.celrep.2014.06.037 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Medvedik O, Lamming DW, Kim KD, Sinclair DA (2007) MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5(10):e261. doi: 10.1371/journal.pbio.0050261 PubMedCentralPubMedCrossRefGoogle Scholar
  69. Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leao C, Costa V, Rodrigues F, Burhans WC, Ludovico P (2010) Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci U S A 107(34):15123–15128. doi: 10.1073/pnas.1004432107 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Millard PJ, Roth BL, Thi HP, Yue ST, Haugland RP (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol 63(7):2897–2905PubMedCentralPubMedGoogle Scholar
  71. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183(4677):1751–1752PubMedCrossRefGoogle Scholar
  72. Murakami C, Kaeberlein M (2009) Quantifying yeast chronological life span by outgrowth of aged cells. J Vis Exp 27. doi: 10.3791/1156. http://www.jove.com/index/Details.stp?ID=1156
  73. Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M (2008) A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci 63(2):113–121PubMedCrossRefGoogle Scholar
  74. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966PubMedCrossRefGoogle Scholar
  75. Ocampo A, Barrientos A (2011) Quick and reliable assessment of chronological life span in yeast cell populations by flow cytometry. Mech Ageing Dev 132(6–7):315–323. doi: 10.1016/j.mad.2011.06.007 PubMedCrossRefGoogle Scholar
  76. Orlandi I, Bettiga M, Alberghina L, Nystrom T, Vai M (2010) Sir2-dependent asymmetric segregation of damaged proteins in ubp10 null mutants is independent of genomic silencing. Biochim Biophys Acta 1803(5):630–638. doi: 10.1016/j.bbamcr.2010.02.009 PubMedCrossRefGoogle Scholar
  77. Pan Y, Shadel GS (2009) Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 1(1):131–145PubMedCentralPubMedGoogle Scholar
  78. Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS (2011) Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab 13(6):668–678. doi: 10.1016/j.cmet.2011.03.018 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184. doi: 10.1101/gad.1381406 PubMedCentralPubMedCrossRefGoogle Scholar
  80. Reinke A, Anderson S, McCaffery JM, Yates J 3rd, Aronova S, Chu S, Fairclough S, Iverson C, Wedaman KP, Powers T (2004) TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 279(15):14752–14762. doi: 10.1074/jbc.M313062200 PubMedCrossRefGoogle Scholar
  81. Riesen M, Morgan A (2009) Calorie restriction reduces rDNA recombination independently of rDNA silencing. Aging Cell 8(6):624–632. doi: 10.1111/j.1474-9726.2009.00514.x PubMedCentralPubMedCrossRefGoogle Scholar
  82. Ringel AE, Ryznar R, Picariello H, Huang KL, Lazarus AG, Holmes SG (2013) Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination. PLoS Genet 9(10):e1003871. doi: 10.1371/journal.pgen.1003871 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45(6):410–418. doi: 10.1016/j.exger.2010.03.014 PubMedCrossRefGoogle Scholar
  84. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101(45):15998–16003. doi: 10.1073/pnas.0404184101 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Salvi JS, Chan JN, Pettigrew C, Liu TT, Wu JD, Mekhail K (2013) Enforcement of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA repeats by Rif1. Aging Cell 12(1):67–75. doi: 10.1111/acel.12020 PubMedCrossRefGoogle Scholar
  86. Schleit J, Johnson SC, Bennett CF, Simko M, Trongtham N, Castanza A, Hsieh EJ, Moller RM, Wasko BM, Delaney JR, Sutphin GL, Carr D, Murakami CJ, Tocchi A, Xian B, Chen W, Yu T, Goswami S, Higgins S, Holmberg M, Jeong KS, Kim JR, Klum S, Liao E, Lin MS, Lo W, Miller H, Olsen B, Peng ZJ, Pollard T, Pradeep P, Pruett D, Rai D, Ros V, Singh M, Spector BL, Vander Wende H, An EH, Fletcher M, Jelic M, Rabinovitch PS, MacCoss MJ, Han JD, Kennedy BK, Kaeberlein M (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12(6):1050–1061. doi: 10.1111/acel.12130 PubMedCrossRefGoogle Scholar
  87. Schmeisser K, Mansfeld J, Kuhlow D, Weimer S, Priebe S, Heiland I, Birringer M, Groth M, Segref A, Kanfi Y, Price NL, Schmeisser S, Schuster S, Pfeiffer AF, Guthke R, Platzer M, Hoppe T, Cohen HY, Zarse K, Sinclair DA, Ristow M (2013) Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat Chem Biol 9(11):693–700. doi: 10.1038/nchembio.1352 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Shanley DP, Kirkwood TB (2000) Calorie restriction and aging: a life-history analysis. Evol Int J Org Evol 54(3):740–750CrossRefGoogle Scholar
  89. Sinclair DA (2013) Studying the replicative life span of yeast cells. Methods Mol Biol 1048:49–63. doi: 10.1007/978-1-62703-556-9_5 PubMedCrossRefGoogle Scholar
  90. Smith DL Jr, McClure JM, Matecic M, Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6(5):649–662. doi: 10.1111/j.1474-9726.2007.00326.x PubMedCrossRefGoogle Scholar
  91. Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, Johnston ED, Tchao BN, Pak DN, Welton KL, Promislow DE, Thomas JH, Kaeberlein M, Kennedy BK (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18(4):564–570. doi: 10.1101/gr.074724.107 PubMedCentralPubMedCrossRefGoogle Scholar
  92. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63PubMedCentralPubMedCrossRefGoogle Scholar
  93. Speakman JR, Selman C, McLaren JS, Harper EJ (2002) Living fast, dying when? The link between aging and energetics. J Nutr 132(6 Suppl 2):1583S–1597SPubMedGoogle Scholar
  94. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133(2):292–302. doi: 10.1016/j.cell.2008.02.037 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Steffen KK, Kennedy BK, Kaeberlein M (2009) Measuring replicative life span in the budding yeast. J Vis Exp 28. doi: 10.3791/1209. http://www.jove.com/index/Details.stp?ID=1209
  96. Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11(1):83–93PubMedCrossRefGoogle Scholar
  97. Teng X, Hardwick JM (2009) Reliable method for detection of programmed cell death in yeast. Methods Mol Biol 559:335–342. doi: 10.1007/978-1-60327-017-5_23 PubMedCentralPubMedCrossRefGoogle Scholar
  98. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410(6825):227–230. doi: 10.1038/35065638 PubMedCrossRefGoogle Scholar
  99. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426(6967):620. doi: 10.1038/426620a PubMedCrossRefGoogle Scholar
  100. Wei M, Fabrizio P, Hu J, Ge H, Cheng C, Li L, Longo VD (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4(1):e13. doi: 10.1371/journal.pgen.0040013 PubMedCentralPubMedCrossRefGoogle Scholar
  101. Wei M, Fabrizio P, Madia F, Hu J, Ge H, Li LM, Longo VD (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5(5):e1000467. doi: 10.1371/journal.pgen.1000467 PubMedCentralPubMedCrossRefGoogle Scholar
  102. Weinberger M, Mesquita A, Caroll T, Marks L, Yang H, Zhang Z, Ludovico P, Burhans WC (2010) Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging 2(10):709–726PubMedCentralPubMedGoogle Scholar
  103. Xie Z, Zhang Y, Zou K, Brandman O, Luo C, Ouyang Q, Li H (2012) Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell 11(4):599–606. doi: 10.1111/j.1474-9726.2012.00821.x PubMedCentralPubMedCrossRefGoogle Scholar
  104. Yiu G, McCord A, Wise A, Jindal R, Hardee J, Kuo A, Shimogawa MY, Cahoon L, Wu M, Kloke J, Hardin J, Mays Hoopes LL (2008) Pathways change in expression during replicative aging in Saccharomyces cerevisiae. J Gerontol A Biol Sci Med Sci 63(1):21–34PubMedCentralPubMedCrossRefGoogle Scholar
  105. Zhang T, Fang HH (2004) Quantification of Saccharomyces cerevisiae viability using BacLight. Biotechnol Lett 26(12):989–992PubMedCrossRefGoogle Scholar
  106. Zhang Y, Luo C, Zou K, Xie Z, Brandman O, Ouyang Q, Li H (2012) Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS One 7(11):e48275. doi: 10.1371/journal.pone.0048275 PubMedCentralPubMedCrossRefGoogle Scholar
  107. Zhao K, Harshaw R, Chai X, Marmorstein R (2004) Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases. Proc Natl Acad Sci U S A 101(23):8563–8568. doi: 10.1073/pnas.0401057101 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea

Personalised recommendations