Advertisement

Potentiation of Cellular Defense Capacity by Phytochemicals Activating NF-E2-Related Factor 2 for the Prevention and/or Treatment of Alzheimer’s Disease

  • Gyu Hwan Park
  • Jung-Hee JangEmail author

Abstract

Increasing number of evidence suggest that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in cellular endogenous defense against neurotoxic insults via augmentation of numerous neuroprotective genes which wok synergistically in the central nervous system (CNS). Therefore, we reviewed the current literature investigating the roles and molecular features of Nrf2 in the neuropathogenic process of Alzheimer’s disease (AD) such as oxidative stress, inflammation, and apoptosis and further discussed the regulator mechanisms of Nrf2 by covering upstream modulators and downstream target proteins. Finally, as a strategy to fortify Nrf2 signaling pathway, we have introduced representative naturally occurring phytochemicals exhibiting neuroprotective potentials by activating Nrf2 in the CNS and enhancing neurohormetic stress response as a promising therapeutic target for the prevention and/or treatment of AD. Collectively, the information will provide a comprehensive understanding for the currently identified roles of Nrf2 in AD and may facilitate the design of non-clinical and clinical research establishing Nrf2 as a therapeutic target.

Keywords

Alzheimer’s disease (AD) Apoptosis Inflammation NF-E2-related factor 2 (Nrf2) Oxidative stress Phytochemicals 

References

  1. Abramov AY, Canevari L, Duchen MR et al (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23:5088–5095PubMedGoogle Scholar
  2. Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421PubMedCentralPubMedCrossRefGoogle Scholar
  3. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145PubMedCrossRefGoogle Scholar
  4. Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des 9:2499–2511PubMedCrossRefGoogle Scholar
  5. Alam J, Stewart D, Touchard C et al (1999) Nrf2, a Cap‘n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274:26071–26078PubMedCrossRefGoogle Scholar
  6. Allen SJ, Watson JJ, Shoemark DK et al (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175. doi: 10.1016/j.pharmthera.2013.01.004 PubMedCrossRefGoogle Scholar
  7. Arendash GW, Cao C (2010) Caffeine and coffee as therapeutics against Alzheimer’s disease. J Alzheimers Dis 20(Suppl 1):S117–S126. doi: 10.3233/JAD-2010-091249 PubMedGoogle Scholar
  8. Arendash GW, Mori T, Cao C et al (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 17(3):661–680. doi: 10.3233/JAD-2009-1087 PubMedGoogle Scholar
  9. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335–358PubMedCrossRefGoogle Scholar
  10. Basurto-Islas G, Blanchard J, Tung YC et al (2014) Therapeutic benefits of a component of coffee in a rat model of Alzheimer’s disease. Neurobiol Aging 35(12):2701–2712. doi: 10.1016/j.neurobiolaging.2014.06.012 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bergström P, Andersson HC, Gao Y et al (2011) Repeated transient sulforaphane stimulation in astrocytes leads to prolonged Nrf2-mediated gene expression and protection from superoxide-induced damage. Neuropharmacology 60(2–3):343–353. doi: 10.1016/j.neuropharm.2010.09.023 PubMedCrossRefGoogle Scholar
  12. Berhane K, Widersten M, Engstrom A et al (1994) Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc Natl Acad Sci U S A 91:1480–1484PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bloom D, Dhakshinamoorthy S, Jaiswal AK et al (2002) Site-directed mutagenesis of cysteine to serine in the DNA binding region of Nrf2 decreases its capacity to upregulate antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. Oncogene 21(14):2191–2200PubMedCrossRefGoogle Scholar
  14. Butt MS, Sultan MT (2011) Coffee and its consumption: benefits and risks. Crit Rev Food Sci Nutr 51(4):363–373. doi: 10.1080/10408390903586412 PubMedCrossRefGoogle Scholar
  15. Calabrese V, Cornelius C, Rizzarelli E et al (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11(11):2717–2739. doi: 10.1089/ARS.2009.2721 PubMedCrossRefGoogle Scholar
  16. Canas PM, Porciúncula LO, Cunha GM et al (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29(47):14741–14751. doi: 10.1523/JNEUROSCI.3728-09.2009 PubMedCrossRefGoogle Scholar
  17. Cao TT, Ma L, Kandpal G et al (2005) Increased nuclear factor-erythroid 2 p45-related factor 2 activity protects SH-SY5Y cells against oxidative damage. J Neurochem 95(2):406–417PubMedCrossRefGoogle Scholar
  18. Cao C, Loewenstein DA, Lin X et al (2012) High blood caffeine levels in MCI linked to lack of progression to dementia. J Alzheimers Dis 30(3):559–572. doi: 10.3233/JAD-2012-111781 PubMedGoogle Scholar
  19. Carter CA, Kane CJ (2004) Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Curr Med Chem 11(21):2883–2902PubMedCrossRefGoogle Scholar
  20. Cecchi C, Latorraca S, Sorbi S et al (1999) Glutathione level is altered in lymphoblasts from patients with familial Alzheimer’s disease. Neurosci Lett 275:152–154PubMedCrossRefGoogle Scholar
  21. Chan JY, Kwong M (2000) Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta 1517:19–26PubMedCrossRefGoogle Scholar
  22. Chanas SA, Jiang Q, McMahon M et al (2002) Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J 365:405–416PubMedCentralPubMedCrossRefGoogle Scholar
  23. Chen K, Gunter K, Maines MD et al (2000) Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. Neurochemistry 75:304–313CrossRefGoogle Scholar
  24. Cheng PF, Chen JJ, Zhou XY et al (2014) Do soy isoflavones improve cognitive function in postmenopausal women? A meta-analysis. Menopause, 7 Jul 2014. [Epub ahead of print]Google Scholar
  25. Chu YF, Chang WH, Black RM et al (2012) Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer’s mouse model. Food Chem 135(3):2095–2102. doi: 10.1016/j.foodchem.2012.04.148 PubMedCrossRefGoogle Scholar
  26. Chu S, Gu J, Feng L et al (2014) Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 19(2):317–326. doi: 10.1016/j.intimp.2014.01.018 PubMedCrossRefGoogle Scholar
  27. Correa F, Mallard C, Nilsson M et al (2011) Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3β. Neurobiol Dis 44(1):142–151. doi: 10.1016/j.nbd.2011.06.016 PubMedCentralPubMedGoogle Scholar
  28. Correa F, Mallard C, Nilsson M et al (2012) Dual TNFα-induced effects on NRF2 mediated antioxidant defence in astrocyte-rich cultures: role of protein kinase activation. Neurochem Res 37(12):2842–2855. doi: 10.1007/s11064-012-0878-y PubMedCentralPubMedCrossRefGoogle Scholar
  29. Costa MS, Botton PH, Mioranzza S et al (2008) Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice. Neuroscience 153(4):1071–1078. doi: 10.1016/j.neuroscience.2008.03.038 PubMedCrossRefGoogle Scholar
  30. Deng C, Tao R, Yu SZ et al (2012) Sulforaphane protects against 6-hydroxydopamine-induced cytotoxicity by increasing expression of heme oxygenase-1 in a PI3K/Akt-dependent manner. Mol Med Rep 5(3):847–851. doi: 10.3892/mmr.2011.731 PubMedGoogle Scholar
  31. Dickinson DA, Levonen AL, Moellering DR et al (2004) Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic Biol Med 37:1152–1159PubMedCrossRefGoogle Scholar
  32. Dilshara MG, Lee KT, Jayasooriya RG et al (2014) Downregulation of NO and PGE2 in LPS-stimulated BV2 microglial cells by trans-isoferulic acid via suppression of PI3K/Akt-dependent NF-κB and activation of Nrf2-mediated HO-1. Int Immunopharmacol 18(1):203–211. doi: 10.1016/j.intimp.2013.11.020 PubMedCrossRefGoogle Scholar
  33. Ding J, Yu HL, Ma WW et al (2013) Soy isoflavone attenuates brain mitochondrial oxidative stress induced by β-amyloid peptides 1-42 injection in lateral cerebral ventricle. J Neurosci Res 91(4):562–567. doi: 10.1002/jnr.23163 PubMedCrossRefGoogle Scholar
  34. Dore S (2002) Decreased activity of the antioxidant heme oxygenase enzyme: implications in ischemia and in Alzheimer’s disease. Free Radic Biol Med 32:1276–1282PubMedCrossRefGoogle Scholar
  35. Dostal V, Roberts CM, Link CD et al (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of β-amyloid peptide toxicity. Genetics 186(3):857–866. doi:  10.1534/genetics.110.120436 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Du Y, Wooten MC, Gearing M et al (2009) Age-associated oxidative damage to the p62 promoter: implications for Alzheimer disease. Free Radic Biol Med 46(4):492–501. doi: 10.1016/j.freeradbiomed.2008.11.003 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Du X, Xu H, Jiang H et al (2013) Akt/Nrf2 activated upregulation of heme oxygenase-1 involves in the role of Rg1 against ferrous iron-induced neurotoxicity in SK-N-SH cells. Neurotox Res 24(1):71–79. doi: 10.1007/s12640-012-9362-3 PubMedCrossRefGoogle Scholar
  38. Durany N, Münch G, Michel T et al (1999) Investigations on oxidative stress and therapeutical implications in dementia. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):68–73PubMedCrossRefGoogle Scholar
  39. Eftekharzadeh B, Maghsoudi N, Khodagholi F et al (2010) Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid beta formation in NT2N neurons. Biochimie 92(3):245–253. doi: 10.1016/j.biochi.2009.12.001 PubMedCrossRefGoogle Scholar
  40. Farr SA, Ripley JL, Sultana R et al (2014) Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med 67:387–395. doi: 10.1016/j.freeradbiomed.2013.11.014 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Felsenstein KM, Candelario KM, Steindler DA et al (2014) Regenerative medicine in Alzheimer’s disease. Transl Res 163(4):432–438. doi: 10.1016/j.trsl.2013.11.001 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Friedman LG, Qureshi YH, Yu WH et al (2014) Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics, 25 Nov 2014. [Epub ahead of print]Google Scholar
  43. Galeazzi L, Ronchi P, Franceschi C et al (1999) In vitro peroxidase oxidation induces stable dimers of beta-amyloid (1-42) through dityrosine bridge formation. Amyloid 6(1):7–13PubMedCrossRefGoogle Scholar
  44. Gan N, Wu YC, Brunet M et al (2010) Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27. J Biol Chem 285(46):35528–35536. doi: 10.1074/jbc.M110.152686 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Gelber RP, Petrovitch H, Masaki KH et al (2011) Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J Alzheimers Dis 23(4):607–615. doi: 10.3233/JAD-2010-101428 PubMedCentralPubMedGoogle Scholar
  46. Grammas P, Ovase R (2001) Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging 22:837–842PubMedCrossRefGoogle Scholar
  47. Gutcher I, Webb PR, Anderson NG et al (2003) The isoform-specific regulation of apoptosis by protein kinase C. Cell Mol Life Sci 60(6):1061–1070PubMedGoogle Scholar
  48. Gutierrez-Zepeda A, Santell R, Wu Z et al (2005) Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci 6:54PubMedCentralPubMedCrossRefGoogle Scholar
  49. Gwon AR, Park JS, Arumugam TV et al (2012) Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer’s disease. Aging Cell 11(4):559–568. doi:  10.1111/j.1474-9726.2012.00817.x PubMedCentralPubMedCrossRefGoogle Scholar
  50. Hara H, Ohta M, Ohta K et al (2003) Increase of antioxidative potential by tert-butylhydroquinone protects against cell death associated with 6-hydroxydopamine-induced oxidative stress in neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res 119:125–131PubMedCrossRefGoogle Scholar
  51. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185PubMedCrossRefGoogle Scholar
  52. Hayes JD, McMahon M (2001) Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett 174:103–113PubMedCrossRefGoogle Scholar
  53. Hayes JD, Flanagan JU, Jowsey IR et al (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedCrossRefGoogle Scholar
  54. Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J et al (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–2701. doi: 10.1016/j.cellsig.2014.08.019 PubMedCrossRefGoogle Scholar
  55. Hernández F, Borrell J, Guaza C et al (2002) Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem 83(6):1529–1533PubMedCrossRefGoogle Scholar
  56. Ho L, Pieroni C, Winger D et al (1999) Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. J Neurosci Res 57(3):295–303PubMedCrossRefGoogle Scholar
  57. Hong Y, Yan W, Chen S et al (2010) The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 31(11):1421–1430. doi: 10.1038/aps.2010.101 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Hsieh HM, Wu WM, Hu ML et al (2009) Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol 47(3):625–632. doi: 10.1016/j.fct.2008.12.026 PubMedCrossRefGoogle Scholar
  59. Huang HC, Nguyen T, Pickett CB et al (2000) Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci U S A 97(23):12475–12480PubMedCentralPubMedCrossRefGoogle Scholar
  60. Huang HC, Nguyen T, Pickett CB et al (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277(45):42769–42774PubMedCrossRefGoogle Scholar
  61. Huang J, Wu D, Wang J et al (2014a) Effects of Panax notoginseng saponin on α, β, and γ secretase involved in Aβ deposition in SAMP8 mice. Neuroreport 25(2):89–93. doi: 10.1097/WNR.0000000000000048 PubMedCrossRefGoogle Scholar
  62. Huang XP, Qiu YY, Wang B et al (2014b) Effects of Astragaloside IV combined with the active components of Panax notoginseng on oxidative stress injury and nuclear factor-erythroid 2-related factor 2/heme oxygenase-1 signaling pathway after cerebral ischemia-reperfusion in mice. Pharmacogn Mag 10(40):402–409. doi: 10.4103/0973-1296.141765 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Huang Y, Yu J, Wan F et al (2014c) Panaxatriol saponins attenuated oxygen-glucose deprivation injury in PC12 cells via activation of PI3K/Akt and Nrf2 signaling pathway. Oxid Med Cell Longev 2014:978034. doi: 10.1155/2014/978034 PubMedCentralPubMedGoogle Scholar
  64. Hwang YP, Jeong HG (2008) The coffee diterpene kahweol induces heme oxygenase-1 via the PI3K and p38/Nrf2 pathway to protect human dopaminergic neurons from 6-hydroxydopamine-derived oxidative stress. FEBS Lett 582(17):2655–2662. doi: 10.1016/j.febslet.2008.06.045 PubMedCrossRefGoogle Scholar
  65. Hwang YP, Jeong HG (2010) Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol 242(1):18–28. doi: 10.1016/j.taap.2009.09.009 PubMedCrossRefGoogle Scholar
  66. Ikeda H, Nishi S, Sakai M et al (2004) Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis. Biochem J 380:515–521PubMedCentralPubMedCrossRefGoogle Scholar
  67. Innamorato NG, Rojo AI, García-Yagüe AJ et al (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689PubMedCrossRefGoogle Scholar
  68. Ishii T, Itoh K, Sato H et al (1999) Oxidative stress-inducible proteins in macrophages. Free Radic Res 31:351–355PubMedCrossRefGoogle Scholar
  69. Ishikawa M, Numazawa S, Yoshida T (2005) Redox regulation of the transcriptional repressor Bach1. Free Radic Biol Med 38(10):1344–1352PubMedCrossRefGoogle Scholar
  70. Jain AK, Jaiswal AK et al (2007) GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem 282(22):16502–16510PubMedCrossRefGoogle Scholar
  71. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285(29):22576–22591. doi: 10.1074/jbc.M110.118976 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Jaiswal AK (2000) Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 29:254–262PubMedCrossRefGoogle Scholar
  73. Jeyapaul J, Jaiswal AK (2000) Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of γ-glutamylcysteine synthetase heavy subunit gene. Biochem Pharmacol 59:1433–1439PubMedCrossRefGoogle Scholar
  74. Jin W, Wang H, Yan W et al (2008) Disruption of Nrf2 enhances upregulation of nuclear factor-κB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm 2008:725174. doi: 10.1155/2008/725174 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Jin W, Ni H, Hou X et al (2014) Tert-butylhydroquinone protects the spinal cord against inflammatory response produced by spinal cord injury. Ann Clin Lab Sci 44(2):151–157PubMedGoogle Scholar
  76. Jo C, Gundemir S, Pritchard S et al (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496. doi: 10.1038/ncomms4496 PubMedCentralPubMedGoogle Scholar
  77. Joshi G, Gan KA, Johnson DA et al (2014) Increased Alzheimer’s disease-like pathology in the APP/ PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging, pii: S0197-4580(14)00599-5. doi:  10.1016/j.neurobiolaging.2014.09.004
  78. Kang KW, Cho MK, Lee CH et al (2001) Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells. Mol Pharmacol 59(5):1147–1156PubMedGoogle Scholar
  79. Kang KW, Lee SJ, Park JW et al (2002) Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol Pharmacol 62(5):1001–1010PubMedCrossRefGoogle Scholar
  80. Kang CH, Choi YH, Moon SK et al (2013) Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int Immunopharmacol 17(3):808–813. doi: 10.1016/j.intimp.2013.09.009 PubMedCrossRefGoogle Scholar
  81. Kärkkäinen V, Pomeshchik Y, Savchenko E et al (2014) Nrf2 regulates neurogenesis and protects neural progenitor cells against Aβ toxicity. Stem Cells 32(7):1904–1916. doi: 10.1002/stem.1666 PubMedCrossRefGoogle Scholar
  82. Kim HC, Yamada K, Nitta A et al (2003) Immunocytochemical evidence that Aβ1-42 impairs endogenous antioxidant systems in vivo. Neuroscience 119:399–419PubMedCrossRefGoogle Scholar
  83. Kim S, Lee D, Song JC et al (2014) NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model. Biochem Biophys Res Commun 454(1):196–201. doi: 10.1016/j.bbrc.2014.10.066 PubMedCrossRefGoogle Scholar
  84. Kimpara T, Takeda A, Yamaguchi T et al (2000) Increased bilirubins and their derivatives in cerebrospinal fluid in Alzheimer’s disease. Neurobiol Aging 21:551–554PubMedCrossRefGoogle Scholar
  85. Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12(3):213–223. doi: 10.1038/ncb2021 PubMedGoogle Scholar
  86. Kosaka K, Mimura J, Itoh K et al (2010) Role of Nrf2 and p62/ZIP in the neurite outgrowth by carnosic acid in PC12h cells. J Biochem 147(1):73–81. doi: 10.1093/jb/mvp149 PubMedCrossRefGoogle Scholar
  87. Kwon SH, Lee HK, Kim JA et al (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649(1–3):210–217. doi: 10.1016/j.ejphar.2010.09.001 PubMedCrossRefGoogle Scholar
  88. Lau A, Wang XJ, Zhao F et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30(13):3275–3285. doi: 10.1128/MCB.00248-10 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Le WD, Xie WJ, Appel SH et al (1999) Protective role of heme oxygenase-1 in oxidative stress-induced neuronal injury. J Neurosci Res 56:652–658PubMedCrossRefGoogle Scholar
  90. Lee JM, Calkins MJ, Chan K et al (2003a) Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278(14):12029–12038PubMedCrossRefGoogle Scholar
  91. Lee JM, Shih AY, Murphy TH et al (2003b) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278(39):37948–37956PubMedCrossRefGoogle Scholar
  92. Lee C, Park GH, Kim CY et al (2011) [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem Toxicol 49(6):1261–1269. doi: 10.1016/j.fct.2011.03.005 PubMedCrossRefGoogle Scholar
  93. Lee C, Park GH, Lee SR et al (2013) Attenuation of β-amyloid-induced oxidative cell death by sulforaphane via activation of NF-E2-related factor 2. Oxid Med Cell Longev 2013:313510. doi: 10.1155/2013/313510 PubMedCentralPubMedGoogle Scholar
  94. Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224(2):171–184PubMedCrossRefGoogle Scholar
  95. Lee S, Kim J, Seo SG et al (2014) Sulforaphane alleviates scopolamine-induced memory impairment in mice. Pharmacol Res 85:23–32. doi: 10.1016/j.phrs.2014.05.003 PubMedCrossRefGoogle Scholar
  96. Li J, Lee JM, Johnson JA et al (2002) Microarray analysis reveals an antioxidant responsive element-driven gene set involved in conferring protection from an oxidative stress-induced apoptosis in IMR-32 cells. J Biol Chem 277:388–394PubMedCrossRefGoogle Scholar
  97. Li J, Johnson D, Calkins M et al (2005) Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicol Sci 83(2):313–328PubMedCrossRefGoogle Scholar
  98. Li N, Liu B, Dluzen DE et al (2007) Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J Ethnopharmacol 111(3):458–463PubMedCrossRefGoogle Scholar
  99. Li L, Li W, Jung SW et al (2011) Protective effects of decursin and decursinol angelate against amyloid β-protein-induced oxidative stress in the PC12 cell line: the role of Nrf2 and antioxidant enzymes. Biosci Biotechnol Biochem 75(3):434–442PubMedCrossRefGoogle Scholar
  100. Li XH, Li CY, Lu JM et al (2012) Allicin ameliorates cognitive deficits ageing-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Neurosci Lett 514(1):46–50. doi: 10.1016/j.neulet.2012.02.054 PubMedCrossRefGoogle Scholar
  101. Liao YF, Wang BJ, Cheng HT et al (2004) Tumor necrosis factor-α, interleukin-1β, and interferon-γ stimulate γ-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 279(47):49523–49532PubMedCrossRefGoogle Scholar
  102. Liao W, Jin G, Zhao M et al (2013) The effect of genistein on the content and activity of α- and β-secretase and protein kinase C in Aβ-injured hippocampal neurons. Basic Clin Pharmacol Toxicol 112(3):182–185. doi: 10.1111/bcpt.12009 PubMedCrossRefGoogle Scholar
  103. Liu H, Wang H, Shenvi S et al (2004) Glutathione metabolism during aging and in Alzheimer disease. Ann N Y Acad Sci 1019:346–349PubMedCrossRefGoogle Scholar
  104. Lovell MA, Ehmann WD, Mattson MP et al (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18(5):457–461PubMedCrossRefGoogle Scholar
  105. Lovell MA, Xie C, Markesbery WR et al (1998) Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology 51:1562–1566PubMedCrossRefGoogle Scholar
  106. Lovell MA, Gabbita SP, Markesbery WR et al (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem 72(2):771–776PubMedCrossRefGoogle Scholar
  107. Luo S, Lan T, Liao W et al (2012) Genistein inhibits Aβ25-35-induced neurotoxicity in PC12 cells via PKC signaling pathway. Neurochem Res 37(12):2787–2794. doi: 10.1007/s11064-012-0872-4 PubMedCrossRefGoogle Scholar
  108. Lüth HJ, Münch G, Arendt T et al (2002) Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res 953(1–2):135–143PubMedCrossRefGoogle Scholar
  109. Ma B, Meng X, Wang J et al (2014) Notoginsenoside R1 attenuates amyloid-β-induced damage in neurons by inhibiting reactive oxygen species and modulating MAPK activation. Int Immunopharmacol 22(1):151–159. doi: 10.1016/j.intimp.2014.06.018 PubMedCrossRefGoogle Scholar
  110. Malm TM, Iivonen H, Goldsteins G et al (2007) Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting beta-amyloid burden. J Neurosci 27(14):3712–3721PubMedCrossRefGoogle Scholar
  111. Mann GE, Bonacasa B, Ishii T et al (2009) Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. Curr Opin Pharmacol 9(2):139–145. doi: 10.1016/j.coph.2008.12.012 PubMedCrossRefGoogle Scholar
  112. McMahon M, Itoh K, Yamamoto M et al (2001) The Cap‘n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61:3299–3307PubMedGoogle Scholar
  113. Mecocci P, MacGarvey U, Beal MF et al (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36(5):747–751PubMedCrossRefGoogle Scholar
  114. Meng XB, Sun GB, Wang M et al (2013) P90RSK and Nrf2 activation via MEK1/2-ERK1/2 pathways mediated by Notoginsenoside R2 to prevent 6-hydroxydopamine-induced apoptotic death in SH-SY5Y cells. Evid Based Complement Alternat Med 2013:971712. doi: 10.1155/2013/971712 PubMedCentralPubMedGoogle Scholar
  115. Meng X, Wang M, Sun G et al (2014a) Attenuation of Aβ25-35-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways. Toxicol Appl Pharmacol 279(1):63–75. doi: 10.1016/j.taap.2014.03.026 PubMedCrossRefGoogle Scholar
  116. Meng X, Wang M, Wang X et al (2014b) Suppression of NADPH oxidase- and mitochondrion-derived superoxide by Notoginsenoside R1 protects against cerebral ischemia-reperfusion injury through estrogen receptor-dependent activation of Akt/Nrf2 pathways. Free Radic Res 48(7):823–838. doi: 10.3109/10715762.2014.911853 PubMedCrossRefGoogle Scholar
  117. Murakami K, Murata N, Noda Y et al (2012) Stimulation of the amyloidogenic pathway by cytoplasmic superoxide radicals in an Alzheimer’s disease mouse model. Biosci Biotechnol Biochem 76(6):1098–1103PubMedCrossRefGoogle Scholar
  118. Murphy TH, De Long MJ, Coyle JT et al (1991) Enhanced NAD(P)H:quinone reductase activity prevents glutamate toxicity produced by oxidative stress. Neurochemistry 56:990–995CrossRefGoogle Scholar
  119. Nakaso K, Yano H, Fukuhara Y et al (2003) PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett 546:181–184PubMedCrossRefGoogle Scholar
  120. Narasimhan M, Mahimainathan L, Rathinam ML et al (2011) Overexpression of Nrf2 protects cerebral cortical neurons from ethanol-induced apoptotic death. Mol Pharmacol 80(6):988–999. doi: 10.1124/mol.111.073262 PubMedCentralPubMedCrossRefGoogle Scholar
  121. Nguyen T, Sherratt PJ, Pickett CB et al (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260PubMedCrossRefGoogle Scholar
  122. Nioi P, Hayes JD (2004) Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat Res 555:149–171PubMedCrossRefGoogle Scholar
  123. Nocerino E, Amato M, Izzo AA (2000) The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia 71(Suppl 1):S1–S5PubMedCrossRefGoogle Scholar
  124. Numazawa S, Ishikawa M, Yoshida A et al (2003) Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am J Physiol Cell Physiol 285(2):C334–C342PubMedCrossRefGoogle Scholar
  125. Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39(12):2301–2312. doi: 10.1007/s11064-014-1454-4 PubMedCrossRefGoogle Scholar
  126. Ohtsubo T, Kamada S, Mikami T et al (1999) Identification of NRF2, a member of the NF-E2 family of transcription factors, as a substrate for caspase-3(-like) proteases. Cell Death Differ 6(9):865–872PubMedCrossRefGoogle Scholar
  127. Olivieri G, Baysang G, Meier F et al (2001) N-acetyl-L-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: effects on β-amyloid secretion and tau phosphorylation. J Neurochem 76:224–233PubMedCrossRefGoogle Scholar
  128. Owuor ED, Kong AN (2002) Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 64:765–770PubMedCrossRefGoogle Scholar
  129. Pan M, Li Z, Yeung V et al (2010) Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats. Nutr Metab (Lond) 7:75. doi: 10.1186/1743-7075-7-75 CrossRefGoogle Scholar
  130. Panahian N, Yoshiura M, Maines MD et al (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 72:1187–1203PubMedCrossRefGoogle Scholar
  131. Park HM, Kim JA, Kwak MK et al (2009) Protection against amyloid beta cytotoxicity by sulforaphane: role of the proteasome. Arch Pharm Res 32(1):109–115. doi: 10.1007/s12272-009-1124-2 PubMedCrossRefGoogle Scholar
  132. Pasinetti GM, Aisen PS (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87(2):319–324PubMedCrossRefGoogle Scholar
  133. Pei JJ, Tanaka T, Tung YC et al (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56(1):70–78PubMedCrossRefGoogle Scholar
  134. Ping Z, Liu W, Kang Z et al (2010) Sulforaphane protects brains against hypoxic-ischemic injury through induction of Nrf2-dependent phase 2 enzyme. Brain Res 1343:178–185. doi: 10.1016/j.brainres.2010.04.036 PubMedCrossRefGoogle Scholar
  135. Premkumar DR, Smith MA, Richey PL et al (1995) Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J Neurochem 65:1399–1402PubMedCrossRefGoogle Scholar
  136. Rada P, Rojo AI, Evrard-Todeschi N et al (2012) Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol Cell Biol 32(17):3486–3499. doi: 10.1128/MCB.00180-12 PubMedCentralPubMedCrossRefGoogle Scholar
  137. Rinaldi P, Polidori MC, Metastasio A et al (2003) Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging 24(7):915–919PubMedCrossRefGoogle Scholar
  138. Ritchie K, Carrière I, de Mendonca A et al (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69(6):536–545PubMedCrossRefGoogle Scholar
  139. Rivera P, Pérez-Martín M, Pavón FJ et al (2013) Pharmacological administration of the isoflavone daidzein enhances cell proliferation and reduces high fat diet-induced apoptosis and gliosis in the rat hippocampus. PLoS One 8(5), e64750. doi: 10.1371/journal.pone.0064750. Print 2013 PubMedCentralPubMedCrossRefGoogle Scholar
  140. Rodgers EE, Theibert AB (2002) Functions of PI 3-kinase in development of the nervous system. Int J Dev Neurosci 20(3–5):187–197PubMedCrossRefGoogle Scholar
  141. Rohn TT, Head E (2009) Caspases as therapeutic targets in Alzheimer’s disease: is it time to “cut” to the chase? Int J Clin Exp Pathol 2(2):108–118PubMedCentralPubMedGoogle Scholar
  142. Rojo AI, Innamorato NG, Martín-Moreno AM et al (2010) Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 58(5):588–598PubMedCrossRefGoogle Scholar
  143. Safar MM, Arab HH, Rizk SM et al (2014) Bone marrow-derived endothelial progenitor cells protect against scopolamine-induced Alzheimer-like pathological aberrations. Mol Neurobiol, 21 Dec 2014. [Epub ahead of print]Google Scholar
  144. Sandberg M, Patil J, D’Angelo B et al (2013) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306. doi: 10.1016/j.neuropharm.2013.11.004 PubMedCrossRefGoogle Scholar
  145. SantaCruz KS, Yazlovitskaya E, Collins J et al (2004) Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer’s disease. Neurobiol Aging 25:63–69PubMedCrossRefGoogle Scholar
  146. Sharpe MA, Clark JB, Duchen MR et al (2002) Amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol Dis 10:258–267PubMedCrossRefGoogle Scholar
  147. Shih AY, Johnson DA, Wong G et al (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23(8):3394–3406PubMedGoogle Scholar
  148. Song XY, Hu JF, Chu SF et al (2013) Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats. Eur J Pharmacol 710(1–3):29–38. doi: 10.1016/j.ejphar.2013.03.051 PubMedCrossRefGoogle Scholar
  149. Song J, Hur BE, Bokara KK et al (2014) Agmatine improves cognitive dysfunction and prevents cell death in a streptozotocin-induced Alzheimer rat model. Yonsei Med J 55(3):689–699. doi: 10.3349/ymj.2014.55.3.689 PubMedCentralPubMedCrossRefGoogle Scholar
  150. Soni M, Rahardjo TB, Soekardi R et al (2014) Phytoestrogens and cognitive function: a review. Maturitas 77(3):209–220. doi: 10.1016/j.maturitas.2013.12.010 PubMedCrossRefGoogle Scholar
  151. Sultana R, Perluigi M, Butterfield DA et al (2006) Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 8(11–12):2021–2037PubMedCrossRefGoogle Scholar
  152. Takashima A, Noguchi K, Michel G et al (1996) Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta. Neurosci Lett 203(1):33–36PubMedCrossRefGoogle Scholar
  153. Takeda A, Perry G, Abraham NG et al (2000) Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau. J Biol Chem 275:5395–5399PubMedCrossRefGoogle Scholar
  154. Tan M, Ouyang Y, Jin M et al (2013) Downregulation of Nrf2/HO-1 pathway and activation of JNK/c-Jun pathway are involved in homocysteic acid-induced cytotoxicity in HT-22 cells. Toxicol Lett 223(1):1–8. doi: 10.1016/j.toxlet.2013.08.011 PubMedCrossRefGoogle Scholar
  155. Terazawa R, Akimoto N, Kato T et al (2013) A kavalactone derivative inhibits lipopolysaccharide-stimulated iNOS induction and NO production through activation of Nrf2 signaling in BV2 microglial cells. Pharmacol Res 71:34–43. doi: 10.1016/j.phrs.2013.02.002 PubMedCrossRefGoogle Scholar
  156. Trinh K, Andrews L, Krause J et al (2010) Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson’s disease through an NRF2-dependent mechanism. J Neurosci 30(16):5525–5532. doi: 10.1523/JNEUROSCI.4777-09.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  157. Valles SL, Dolz-Gaiton P, Gambini J et al (2010) Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPAR gamma expression in cultured astrocytes. Brain Res 1312:138–144. doi: 10.1016/j.brainres.2009.11.044 PubMedCrossRefGoogle Scholar
  158. van Gelder BM, Buijsse B, Tijhuis M et al (2007) Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. Eur J Clin Nutr 61(2):226–232PubMedCrossRefGoogle Scholar
  159. Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A 93:14960–14965PubMedCentralPubMedCrossRefGoogle Scholar
  160. Vicente SJ, Ishimoto EY, Torres EA (2014) Coffee modulates transcription factor Nrf2 and highly increases the activity of antioxidant enzymes in rats. J Agric Food Chem 62(1):116–122. doi: 10.1021/jf401777m PubMedCrossRefGoogle Scholar
  161. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4(5):365–375PubMedCrossRefGoogle Scholar
  162. Volz N, Boettler U, Winkler S et al (2012) Effect of coffee combining green coffee bean constituents with typical roasting products on the Nrf2/ARE pathway in vitro and in vivo. J Agric Food Chem 60(38):9631–9641PubMedCrossRefGoogle Scholar
  163. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD et al (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A A101(7):2040–2045CrossRefGoogle Scholar
  164. Wang Y, Santa-Cruz K, DeCarli C et al (2000) NAD(P)H:quinone oxidoreductase activity is increased in hippocampal pyramidal neurons of patients with Alzheimer’s disease. Neurobiol Aging 21:525–531PubMedCrossRefGoogle Scholar
  165. Wang X, de Rivero Vaccari JP, Wang H et al (2012) Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma 29(5):936–945. doi: 10.1089/neu.2011.1922 PubMedCentralPubMedCrossRefGoogle Scholar
  166. Wang CM, Liu MY, Wang F et al (2013) Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer’s disease. Pharmacol Biochem Behav 106:57–67. doi: 10.1016/j.pbb.2013.03.010 PubMedCrossRefGoogle Scholar
  167. Wang Y, Kan H, Yin Y et al (2014) Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. Pharmacol Biochem Behav 120:73–81. doi: 10.1016/j.pbb.2014.02.012 PubMedCrossRefGoogle Scholar
  168. Wild AC, Moinova HR, Mulcahy RT et al (1999) Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274:33627–33636PubMedCrossRefGoogle Scholar
  169. Xi YD, Li XY, Ding J et al (2013) Soy isoflavone alleviates Aβ1-42-induced impairment of learning and memory ability through the regulation of RAGE/LRP-1 in neuronal and vascular tissue. Curr Neurovasc Res 10(2):144–156PubMedCrossRefGoogle Scholar
  170. Xi YD, Li XY, Yu HL et al (2014) Soy isoflavone antagonizes the oxidative cerebrovascular injury induced by β-amyloid peptides 1-42 in rats. Neurochem Res 39(7):1374–1381. doi: 10.1007/s11064-014-1319-x PubMedCrossRefGoogle Scholar
  171. Xie C, Lovell MA, Markesbery WR et al (1998) Glutathione transferase protects neuronal cultures against four hydroxynonenal toxicity. Free Radic Biol Med 25:979–988PubMedCrossRefGoogle Scholar
  172. Xie C, Lovell MA, Xiong S et al (2001) Expression of glutathione-S-transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress. Free Radic Biol Med 31:73–81PubMedCrossRefGoogle Scholar
  173. Xie X, Wang HT, Li CL et al (2010) Ginsenoside Rb1 protects PC12 cells against β-amyloid-induced cell injury. Mol Med Rep 3(4):635–639. doi: 10.3892/mmr_00000308 PubMedGoogle Scholar
  174. Yan S, Li Z, Li H et al (2014) Notoginsenoside R1 increases neuronal excitability and ameliorates synaptic and memory dysfunction following amyloid elevation. Sci Rep 4:6352. doi: 10.1038/srep06352 PubMedCentralPubMedCrossRefGoogle Scholar
  175. Yu R, Lei W, Mandlekar S et al (1999) Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem 274:27545–27552PubMedCrossRefGoogle Scholar
  176. Yu R, Mandlekar S, Lei W et al (2000) p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. J Biol Chem 275:2322–2327PubMedCrossRefGoogle Scholar
  177. Yu HL, Li XY, Zhou X et al (2013) Beta amyloid peptide (25-35) leading to inflammation through Toll-like receptors and the anti-inflammatory effect of genistein in BV-2 cells. J Mol Neurosci 51(3):771–778. doi: 10.1007/s12031-013-0063-z PubMedCrossRefGoogle Scholar
  178. Zeng H, Chen Q, Zhao B et al (2004) Genistein ameliorates beta-amyloid peptide (25-35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 36(2):180–188PubMedCrossRefGoogle Scholar
  179. Zhang DD, Hannink M et al (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23(22):8137–8151PubMedCentralPubMedCrossRefGoogle Scholar
  180. Zhang R, Miao QW, Zhu CX et al (2014a) Sulforaphane ameliorates neurobehavioral deficits and protects the brain from amyloid β deposits and peroxidation in mice with Alzheimer-like lesions. Am J Alzheimers Dis Other Demen. pii: 1533317514542645Google Scholar
  181. Zhang R, Zhang J, Fang L et al (2014b) Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer’s disease-like lesions. Int J Mol Sci 15(8):14396–14410. doi: 10.3390/ijms150814396 PubMedCentralPubMedCrossRefGoogle Scholar
  182. Zhao H, Li Q, Zhang Z et al (2009) Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res 1256:111–122. doi: 10.1016/j.brainres.2008.12.031 PubMedCrossRefGoogle Scholar
  183. Zhao X, Zou Y, Xu H et al (2012) Gastrodin protect primary cultured rat hippocampal neurons against amyloid-beta peptide-induced neurotoxicity via ERK1/2-Nrf2 pathway. Brain Res 1482:13–21. doi: 10.1016/j.brainres.2012.09.010 PubMedCrossRefGoogle Scholar
  184. Zhao L, Mao Z, Chen S et al (2013) Early intervention with an estrogen receptor β-selective phytoestrogenic formulation prolongs survival, improves spatial recognition memory, and slows progression of amyloid pathology in a female mouse model of Alzheimer’s disease. J Alzheimers Dis 37(2):403–419. doi: 10.3233/JAD-122341 PubMedCentralPubMedGoogle Scholar
  185. Zhou N, Tang Y, Keep RF et al (2014) Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine 21(10):1189–1195. doi: 10.1016/j.phymed.2014.05.004 PubMedCentralPubMedCrossRefGoogle Scholar
  186. Zipper LM, Mulcahy RT (2000) Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochem Biophys Res Commun 278:484–492PubMedCrossRefGoogle Scholar
  187. Zou Y, Hong B, Fan L et al (2013) Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: involvement of the GSK-3β/Nrf2 signaling pathway. Free Radic Res 47(1):55–63. doi: 10.3109/10715762.2012.742518 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Research Institute of Pharmaceutical Sciences, College of PharmacyKyungpook National UniversityDaeguSouth Korea
  2. 2.Department of Pharmacology, School of MedicineKeimyung UniversityDaeguSouth Korea

Personalised recommendations