Advertisement

Biomarkers in Alzheimer’s Disease: From Pathogenic Initiation to Downstream Outcomes

  • Sun-Ho Han
  • Jong-Chan Park
  • Inhee Mook-JungEmail author

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is currently the most common form of dementia in the elderly population. Even though AD-related molecular alterations begin decades before the appearance of clinical symptoms, early diagnosis is not possible due to the absence of early diagnostic biomarkers. Early therapeutic treatment interventions are also lacking. Numerous clinical trial failures of promising therapeutic candidates have forced clinicians and researchers to identify diagnostic biomarkers for early detection. Here, we summarize promising biomarker candidates for AD that have been discovered to date, based on information from functional studies of neuropathological mechanisms and clinical research in AD. Potential biomarkers include cerebrospinal fluid (CSF)-based, blood-based, and immunological biomarkers as well as biomarkers detected by genetic profiling and neuroimaging. We discuss the use of these proposed biomarkers in practical applications to diagnose and initiate therapeutic treatment, along with their advantages and limitations.

Keywords

Alzheimer’s disease Biomarker Neurodegenerative disease CSF Amyloidβ Tau Inflammation Blood-brain barrier 

References

  1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421PubMedCentralCrossRefPubMedGoogle Scholar
  2. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91:5562–5566PubMedCentralCrossRefPubMedGoogle Scholar
  3. Ankarcrona M, Winblad B (2005) Biomarkers for apoptosis in Alzheimer’s disease. Int J Geriatr Psychiatry 20:101–105CrossRefPubMedGoogle Scholar
  4. Baik SH, Cha MY, Hyun YM, Cho H, Hamza B, Kim DK, Han SH, Choi H, Kim KH, Moon M, Lee J, Kim M, Irimia D, Mook-Jung I (2014) Migration of neutrophils targeting amyloid plaques in Alzheimer’s disease mouse model. Neurobiol Aging 35:1286–1292PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bergman M, Salman H, Beloosesky Y, Djaldetti M, Bessler H (2002) Are peripheral blood cells from patients with Alzheimer disease more sensitive to apoptotic stimuli? Alzheimer Dis Assoc Disord 16:156–160CrossRefPubMedGoogle Scholar
  6. Blasko I, Lederer W, Oberbauer H, Walch T, Kemmler G, Hinterhuber H, Marksteiner J, Humpel C (2006) Measurement of thirteen biological markers in CSF of patients with Alzheimer’s disease and other dementias. Dement Geriatr Cogn Disord 21:9–15CrossRefPubMedGoogle Scholar
  7. Blasko I, Marx F, Steiner E, Hartmann T, Grubeck-Loebenstein B (1999) TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J 13:63–68PubMedGoogle Scholar
  8. Blennow K (2004) CSF biomarkers for mild cognitive impairment. J Intern Med 256:224–234CrossRefPubMedGoogle Scholar
  9. Blennow K (2005) CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 5:661–672CrossRefPubMedGoogle Scholar
  10. Brettschneider S, Morgenthaler NG, Teipel SJ, Fischer-Schulz C, Burger K, Dodel R, Du Y, Moller HJ, Bergmann A, Hampel H (2005) Decreased serum amyloid beta(1-42) autoantibody levels in Alzheimer’s disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid beta(1-42) peptide. Biol Psychiatry 57:813–816CrossRefPubMedGoogle Scholar
  11. Cedazo-Minguez A, Winblad B (2010) Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol 45:5–14CrossRefPubMedGoogle Scholar
  12. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Krautkramer MJ, Kung HF, Coleman RE, Doraiswamy PM, Fleisher AS, Sabbagh MN, Sadowsky CH, Reiman EP, Zehntner SP, Skovronsky DM, AV45-A07 Study Group (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305:275–283CrossRefPubMedGoogle Scholar
  13. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923CrossRefPubMedGoogle Scholar
  14. Costa R, Ferreira-da-Silva F, Saraiva MJ, Cardoso I (2008) Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor. PLoS One 3:e2899PubMedCentralCrossRefPubMedGoogle Scholar
  15. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes – implications for their role in neurologic disease. Neuroscience 54:15–36CrossRefPubMedGoogle Scholar
  16. Ewers M, Mielke MM, Hampel H (2010) Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp Gerontol 45:75–79PubMedCentralCrossRefPubMedGoogle Scholar
  17. Ferencz B, Karlsson S, Kalpouzos G (2012) Promising genetic biomarkers of preclinical Alzheimer’s disease: the influence of APOE and TOMM40 on brain integrity. Int J Alzheimers Dis 2012:421452PubMedCentralPubMedGoogle Scholar
  18. Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, Lossinsky AS, Graves MC, Gustavson A, Sayre J, Sofroni E, Suarez T, Chiappelli F, Bernard G (2005) Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 7:221–232; discussion 255–262PubMedGoogle Scholar
  19. Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49:171–186CrossRefPubMedGoogle Scholar
  20. Grunblatt E, Bartl J, Zehetmayer S, Ringel TM, Bauer P, Riederer P, Jacob CP (2009) Gene expression as peripheral biomarkers for sporadic Alzheimer’s disease. J Alzheimers Dis 16:627–634PubMedGoogle Scholar
  21. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J, Alzheimer Genetic Analysis Group (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127PubMedCentralCrossRefPubMedGoogle Scholar
  22. Hampel H, Blennow K, Shaw LM, Hoessler YC, Zetterberg H, Trojanowski JQ (2010) Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 45:30–40PubMedCentralCrossRefPubMedGoogle Scholar
  23. Han SH, Jung ES, Sohn JH, Hong HJ, Hong HS, Kim JW, Na DL, Kim M, Kim H, Ha HJ, Kim YH, Huh N, Jung MW, Mook-Jung I (2011) Human serum transthyretin levels correlate inversely with Alzheimer’s disease. J Alzheimers Dis 25:77–84PubMedGoogle Scholar
  24. Han SH, Kim JS, Lee Y, Choi H, Kim JW, Na DL, Yang EG, Yu MH, Hwang D, Lee C, Mook-Jung I (2014) Both targeted mass spectrometry and flow sorting analysis methods detected the decreased serum apolipoprotein E level in Alzheimer’s disease patients. Mol Cell Proteomics 13:407–419PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356CrossRefPubMedGoogle Scholar
  26. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O’Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093PubMedCentralCrossRefPubMedGoogle Scholar
  27. Hochstrasser T, Weiss E, Marksteiner J, Humpel C (2010) Soluble cell adhesion molecules in monocytes of Alzheimer’s disease and mild cognitive impairment. Exp Gerontol 45:70–74PubMedCentralCrossRefPubMedGoogle Scholar
  28. Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29:26–32PubMedCentralCrossRefPubMedGoogle Scholar
  29. Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M (2009) Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 65:24–31CrossRefPubMedGoogle Scholar
  30. Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, Oikonen V, Kailajarvi M, Scheinin M, Viitanen M, Parkkola R, Rinne JO (2007) PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 68:1603–1606CrossRefPubMedGoogle Scholar
  31. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319CrossRefPubMedGoogle Scholar
  32. Leuner K, Pantel J, Frey C, Schindowski K, Schulz K, Wegat T, Maurer K, Eckert A. and Muller WE (2007) Enhanced apoptosis, oxidative stress and mitochondrial dysfunction in lymphocytes as potential biomarkers for Alzheimer’s disease. J Neural Trans Suppl 72:207–215Google Scholar
  33. Lewczuk P, Kornhuber J, Vanderstichele H, Vanmechelen E, Esselmann H, Bibl M, Wolf S, Otto M, Reulbach U, Kolsch H, Jessen F, Schroder J, Schonknecht P, Hampel H, Peters O, Weimer E, Perneczky R, Jahn H, Luckhaus C, Lamla U, Supprian T, Maler JM, Wiltfang J (2008) Multiplexed quantification of dementia biomarkers in the CSF of patients with early dementias and MCI: a multicenter study. Neurobiol Aging 29:812–818CrossRefPubMedGoogle Scholar
  34. Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, Ferri C, Casadei V, Grimaldi LM (2000) Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J Neuroimmunol 103:97–102CrossRefPubMedGoogle Scholar
  35. Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM (2007) Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28:1795–1809CrossRefPubMedGoogle Scholar
  36. Marksteiner J, Kemmler G, Weiss EM, Knaus G, Ullrich C, Mechtcheriakov S, Oberbauer H, Auffinger S, Hinterholzl J, Hinterhuber H, Humpel C (2011) Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 32:539–540PubMedCentralCrossRefPubMedGoogle Scholar
  37. Matsuda H (2007) Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J Nucl Med 48:1289–1300CrossRefPubMedGoogle Scholar
  38. Petrella JR, Coleman RE, Doraiswamy PM (2003) Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 226:315–336CrossRefPubMedGoogle Scholar
  39. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362CrossRefPubMedGoogle Scholar
  40. Richartz-Salzburger E, Batra A, Stransky E, Laske C, Kohler N, Bartels M, Buchkremer G, Schott K (2007) Altered lymphocyte distribution in Alzheimer’s disease. J Psychiatr Res 41:174–178CrossRefPubMedGoogle Scholar
  41. Riemenschneider M, Lautenschlager N, Wagenpfeil S, Diehl J, Drzezga A, Kurz A (2002) Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol 59:1729–1734CrossRefPubMedGoogle Scholar
  42. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. TheScientificWorldJOURNAL 2012:756357PubMedCentralCrossRefPubMedGoogle Scholar
  43. Schindowski K, Peters J, Gorriz C, Schramm U, Weinandi T, Leutner S, Maurer K, Frolich L, Muller WE, Eckert A (2006) Apoptosis of CD4+ T and natural killer cells in Alzheimer’s disease. Pharmacopsychiatry 39:220–228CrossRefPubMedGoogle Scholar
  44. Schoonenboom NS, Mulder C, Van Kamp GJ, Mehta SP, Scheltens P, Blankenstein MA, Mehta PD (2005) Amyloid beta 38, 40, and 42 species in cerebrospinal fluid: more of the same? Ann Neurol 58:139–142CrossRefPubMedGoogle Scholar
  45. Schwarzman AL, Goldgaber D (1996) Interaction of transthyretin with amyloid beta-protein: binding and inhibition of amyloid formation. CIBA Found Symp 199:146–160; discussion 160–144PubMedGoogle Scholar
  46. Shoji M (2002) Cerebrospinal fluid Abeta40 and Abeta42: natural course and clinical usefulness. Front Biosci Virtual Libr Med 7:d997–d1006CrossRefGoogle Scholar
  47. Siest G, Bertrand P, Qin B, Herbeth B, Serot JM, Masana L, Ribalta J, Passmore AP, Evans A, Ferrari M, Franceschi M, Shepherd J, Cuchel M, Beisiegel U, Zuchowsky K, Rukavina AS, Sertic J, Stojanov M, Kostic V, Mitrevski A, Petrova V, Sass C, Merched A, Salonen JT, Tiret L, Visvikis S (2000) Apolipoprotein E polymorphism and serum concentration in Alzheimer’s disease in nine European centres: the ApoEurope study. Clin Chem Lab Med 38:721–730PubMedGoogle Scholar
  48. Slooter AJ, de Knijff P, Hofman A, Cruts M, Breteler MM, Van Broeckhoven C, Havekes LM, van Duijn CM (1998) Serum apolipoprotein E level is not increased in Alzheimer’s disease: the Rotterdam study. Neurosci Lett 248:21–24CrossRefPubMedGoogle Scholar
  49. Taddei K, Clarnette R, Gandy SE, Martins RN (1997) Increased plasma apolipoprotein E (apoE) levels in Alzheimer’s disease. Neurosci Lett 223:29–32CrossRefPubMedGoogle Scholar
  50. Teunissen CE, Lutjohann D, von Bergmann K, Verhey F, Vreeling F, Wauters A, Bosmans E, Bosma H, van Boxtel MP, Maes M, Delanghe J, Blom HJ, Verbeek MM, Rieckmann P, De Bruijn C, Steinbusch HW, de Vente J (2003) Combination of serum markers related to several mechanisms in Alzheimer’s disease. Neurobiol Aging 24:893–902CrossRefPubMedGoogle Scholar
  51. Thambisetty M, Lovestone S (2010) Blood-based biomarkers of Alzheimer’s disease: challenging but feasible. Biomark Med 4:65–79PubMedCentralCrossRefPubMedGoogle Scholar
  52. Tsai MS, Tangalos EG, Petersen RC, Smith GE, Schaid DJ, Kokmen E, Ivnik RJ, Thibodeau SN (1994) Apolipoprotein E: risk factor for Alzheimer disease. Am J Hum Genet 54:643–649PubMedCentralPubMedGoogle Scholar
  53. van Vliet P, Westendorp RG, Eikelenboom P, Comijs HC, Frolich M, Bakker E, van der Flier W, van Exel E (2009) Parental history of Alzheimer disease associated with lower plasma apolipoprotein E levels. Neurology 73:681–687PubMedCentralCrossRefPubMedGoogle Scholar
  54. Velayudhan L, Killick R, Hye A, Kinsey A, Guntert A, Lynham S, Ward M, Leung R, Lourdusamy A, To AW, Powell J, Lovestone S (2012) Plasma transthyretin as a candidate marker for Alzheimer’s disease. J Alzheimers Dis 28:369–375PubMedGoogle Scholar
  55. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative Investigators (2012) The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement J Alzheimers Assoc 8:S1–S68CrossRefGoogle Scholar
  56. Zetterberg H, Blennow K, Hanse E (2010) Amyloid beta and APP as biomarkers for Alzheimer’s disease. Exp Gerontol 45:23–29CrossRefPubMedGoogle Scholar
  57. Zetterberg H, Wahlund LO, Blennow K (2003) Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neurosci Lett 352:67–69CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea

Personalised recommendations