Skip to main content

Catabolism and Anabolism of Amyloid-β

  • Chapter
Aging Mechanisms

Abstract

According to the amyloid cascade hypothesis, the initial elevation of amyloid β-peptide (Aβ) level is the primary trigger of Alzheimer’s disease (AD). The steady-state levels of Aβ are determined by the balance of the production and clearance of Aβ. Ιn familial AD, an imbalance in Aβ kinetics arises from the abnormal generation of Aβ due to mutations in the secretases, which cleave Aβ from the amyloid precursor protein (APP), or in APP itself. However, the large majority of AD is sporadic AD (SAD), which lacks a strong genetic component. In SAD, inactivations of Aβ degradation systems might instead be the cause of the disease. We previously identified neprilysin (NEP) as the major Aβ-degrading enzyme. Importantly, NEP declines in the human brain with aging, which may contribute to the increased Aβ pathology. Therefore, the up-regulation of NEP activity in the brain represents a potential therapy for the prevention of AD. To that end, we recently developed a system to overexpress NEP throughout the brain using an newly designed adeno-associated viral vector carrying the NEP gene (AAV-NEP). In addition to the Aβ-degrading enzymes, we recently found that autophagy plays an important role in Aβ metabolism. Specifically, autophagy influences the intracellular sorting and secretion of Aβ. Intriguingly, autophagy deficiency induces intracellular Aβ accumulation, which enhances autophagy deficiency-induced neurodegeneration. This result indicates that intracellular Aβ might be toxic. Indeed, Aβ clearance systems are potential therapeutic targets in AD, to prevent the disease via a treatment already in early stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowski D, Rabe S, Upadhaya AR, Reichwald J, Danner S, Staab D, Capetillo-Zarate E, Yamaguchi H, Saido TC, Wiederhold KH, Thal DR, Staufenbiel M (2012) Transgenic expression of intraneuronal Abeta42 but not Abeta40 leads to cellular Abeta lesions, degeneration, and functional impairment without typical Alzheimer’s disease pathology. J Neurosci 32:1273–1283

    Article  CAS  PubMed  Google Scholar 

  • Aits S, Jaattela M (2013) Lysosomal cell death at a glance. J Cell Sci 126:1905–1912

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Kondo H, Ikeda K, Kato M, Mcgeer PL (2001) Immunohistochemical localization of neprilysin in the human cerebral cortex: inverse association with vulnerability to amyloid beta-protein (Abeta) deposition. Brain Res 902:277–281

    Article  CAS  PubMed  Google Scholar 

  • Bae SJ, Matsunaga Y, Takenaka M, Tanaka Y, Hamazaki Y, Shimizu K, Katayama I (2002) Substance P induced preprotachykinin-a mRNA, neutral endopeptidase mRNA and substance P in cultured normal fibroblasts. Int Arch Allergy Immunol 127:316–321

    Article  CAS  PubMed  Google Scholar 

  • Barnes K, Matsas R, Hooper NM, Turner AJ, Kenny AJ (1988) Endopeptidase-24.11 is striosomally ordered in pig brain, and in contrast to aminopeptidase N and peptidyl dipeptidase A (‘angiotensin converting enzyme’), is a marker for a set of striatal efferent fibres. Neuroscience 27:799–817

    Article  CAS  PubMed  Google Scholar 

  • Barnes K, Turner AJ, Kenny AJ (1993) An immunoelectron microscopic study of pig substantia nigra shows co-localization of endopeptidase-24.11 with substance P. Neuroscience 53:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 83:876–886

    Article  CAS  Google Scholar 

  • Bolos V, Grego-Bessa J, De La Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28:339–363

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Rickenbacher GT, Rodriguez S, Moulia TW, Albers MW (2012) The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease. Sci Rep 2:231

    PubMed Central  PubMed  Google Scholar 

  • Carvalho KM, Franca MS, Camarao GC, Ruchon AF (1997) A new brain metalloendopeptidase which degrades the Alzheimer beta-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. Braz J Med Biol Res 30:1153–1156

    Article  CAS  PubMed  Google Scholar 

  • Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cisse M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, Ho K, Yu GQ, Mucke L (2011) Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469:47–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deane R, Du Yan S, Submamaryan RK, Larue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  CAS  PubMed  Google Scholar 

  • Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, Larue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV (2004) LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 43:333–344

    Article  CAS  PubMed  Google Scholar 

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118:4002–4013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Do TM, Noel-Hudson MS, Ribes S, Besengez C, Smirnova M, Cisternino S, Buyse M, Calon F, Chimini G, Chacun H, Scherrmann JM, Farinotti R, Bourasset F (2012) ABCG2- and ABCG4-mediated efflux of amyloid-beta peptide 1-40 at the mouse blood-brain barrier. J Alzheimers Dis 30:155–166

    CAS  PubMed  Google Scholar 

  • Dominguez D, Tournoy J, Hartmann D, Huth T, Cryns K, Deforce S, Serneels L, Camacho IE, Marjaux E, Craessaerts K, Roebroek AJ, Schwake M, D’hooge R, Bach P, Kalinke U, Moechars D, Alzheimer C, Reiss K, Saftig P, De Strooper B (2005) Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J Biol Chem 280:30797–30806

    Article  CAS  PubMed  Google Scholar 

  • Duckworth WC (1979) Insulin degradation by liver cell membranes. Endocrinology 104:1758–1764

    Article  CAS  PubMed  Google Scholar 

  • Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19:608–624

    CAS  PubMed  Google Scholar 

  • Eckman EA, Reed DK, Eckman CB (2001) Degradation of the Alzheimer’s amyloid beta peptide by endothelin-converting enzyme. J Biol Chem 276:24540–24548

    Article  CAS  PubMed  Google Scholar 

  • Eckman EA, Watson M, Marlow L, Sambamurti K, Eckman CB (2003) Alzheimer’s disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J Biol Chem 278:2081–2084

    Article  CAS  PubMed  Google Scholar 

  • Elkins JS, Douglas VC, Johnston SC (2004) Alzheimer disease risk and genetic variation in ACE: a meta-analysis. Neurology 62:363–368

    Article  CAS  PubMed  Google Scholar 

  • Ertekin-Taner N, Ronald J, Feuk L, Prince J, Tucker M, Younkin L, Hella M, Jain S, Hackett A, Scanlin L, Kelly J, Kihiko-Ehman M, Neltner M, Hersh L, Kindy M, Markesbery W, Hutton M, De Andrade M, Petersen RC, Graff-Radford N, Estus S, Brookes AJ, Younkin SG (2005) Elevated amyloid beta protein (Abeta42) and late onset Alzheimer’s disease are associated with single nucleotide polymorphisms in the urokinase-type plasminogen activator gene. Hum Mol Genet 14:447–460

    Article  CAS  PubMed  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100:4162–4167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fossati S, Ghiso J, Rostagno A (2012) TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer’s Abeta. Cell Death Dis 3:e321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K, Kaether C, Fandrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci U S A 107:1942–1947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh AK, Brindisi M, Tang J (2012) Developing beta-secretase inhibitors for treatment of Alzheimer’s disease. J Neurochem 120(Suppl 1):71–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green RC, Schneider LS, Amato DA, Beelen AP, Wilcock G, Swabb EA, Zavitz KH, Tarenflurbil Phase 3 Study G (2009) Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 302:2557–2564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23:435–447

    Article  CAS  PubMed  Google Scholar 

  • Guy JL, Lambert DW, Warner FJ, Hooper NM, Turner AJ (2005) Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim Biophys Acta 1751:2–8

    Article  CAS  PubMed  Google Scholar 

  • Hama E, Shirotani K, Masumoto H, Sekine-Aizawa Y, Aizawa H, Saido TC (2001) Clearance of extracellular and cell-associated amyloid beta peptide through viral expression of neprilysin in primary neurons. J Biochem 130:721–726

    Article  CAS  PubMed  Google Scholar 

  • Hamazaki H (1996) Cathepsin D is involved in the clearance of Alzheimer’s beta-amyloid protein. FEBS Lett 396:139–142

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hedskog L, Zhang S, Ankarcrona M (2012) Strategic role for mitochondria in Alzheimer’s disease and cancer. Antioxid Redox Signal 16:1476–1491

    Article  CAS  PubMed  Google Scholar 

  • Hemming ML, Selkoe DJ (2005) Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem 280:37644–37650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herz J (2001) The LDL receptor gene family: (un)expected signal transducers in the brain. Neuron 29:571–581

    Article  CAS  PubMed  Google Scholar 

  • Hitt B, Riordan SM, Kukreja L, Eimer WA, Rajapaksha TW, Vassar R (2012) beta-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J Biol Chem 287:38408–38425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong L, Koelsch G, Lin X, Wu S, Terzyan S, Ghosh AK, Zhang XC, Tang J (2000) Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science 290:150–153

    Article  CAS  PubMed  Google Scholar 

  • Howell S, Caswell AM, Kenny AJ, Turner AJ (1993) Membrane peptidases on human osteoblast-like cells in culture: hydrolysis of calcitonin and hormonal regulation of endopeptidase-24.11. Biochem J 290(Pt 1):159–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O’carroll AM, Patel YC, Schonbrunn A, Taylor JE et al (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 16:86–88

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem 276:47863–47868

    CAS  PubMed  Google Scholar 

  • Hu X, Zhou X, He W, Yang J, Xiong W, Wong P, Wilson CG, Yan R (2010) BACE1 deficiency causes altered neuronal activity and neurodegeneration. J Neurosci 30:8819–8829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu X, He W, Luo X, Tsubota KE, Yan R (2013) BACE1 regulates hippocampal astrogenesis via the Jagged1-Notch pathway. Cell Rep 4:40–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292:1550–1552

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Takaki Y, Fukami S, Tsubuki S, Saido TC (2002) Region-specific reduction of A beta-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging. J Neurosci Res 70:493–500

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Mizukami H, Shirotani K, Takaki Y, Muramatsu S, Lu B, Gerard NP, Gerard C, Ozawa K, Saido TC (2004) Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain. J Neurosci 24:991–998

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Sekiguchi M, Hattori Y, Takahashi A, Asai M, Ji B, Higuchi M, Staufenbiel M, Muramatsu S, Saido TC (2013) Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep 3:1472

    PubMed Central  PubMed  Google Scholar 

  • Jedlitschky G, Grube M, Mosyagin I, Kroemer HK, Vogelgesang S (2014) Targeting CNS transporters for treatment of neurodegenerative diseases. Curr Pharm Des 20:1523–1533

    Article  CAS  PubMed  Google Scholar 

  • Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jonsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99

    Article  CAS  PubMed  Google Scholar 

  • Kakiya N, Saito T, Nilsson P, Matsuba Y, Tsubuki S, Takei N, Nawa H, Saido TC (2012) Cell surface expression of the major amyloid-beta peptide (Abeta)-degrading enzyme, neprilysin, depends on phosphorylation by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) and dephosphorylation by protein phosphatase 1a. J Biol Chem 287:29362–29372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kehoe PG, Russ C, Mcilory S, Williams H, Holmans P, Holmes C, Liolitsa D, Vahidassr D, Powell J, Mcgleenon B, Liddell M, Plomin R, Dynan K, Williams N, Neal J, Cairns NJ, Wilcock G, Passmore P, Lovestone S, Williams J, Owen MJ (1999) Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat Genet 21:71–72

    Article  CAS  PubMed  Google Scholar 

  • Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726

    Article  CAS  PubMed  Google Scholar 

  • Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J, Schumacher T, Bruning T, Plath AS, Alfen F, Schmidt A, Winter F, Rateitschak K, Wree A, Gsponer J, Walker LC, Pahnke J (2011) Cerebral amyloid-beta proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest 121:3924–3931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurochkin IV, Goto S (1994) Alzheimer’s beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345:33–37

    Article  CAS  PubMed  Google Scholar 

  • Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25:11693–11709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lipinski MM (2010) Towards the global understanding of the autophagy regulatory network. Autophagy 6:1218–1220

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kawai H, Berg DK (2001) beta -Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci U S A 98:4734–4739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malfroy B, Swerts JP, Guyon A, Roques BP, Schwartz JC (1978) High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 276:523–526

    Article  CAS  PubMed  Google Scholar 

  • Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23:1992–1996

    CAS  PubMed  Google Scholar 

  • Masaki T (2004) Historical review: endothelin. Trends Pharmacol Sci 25:219–224

    Article  CAS  PubMed  Google Scholar 

  • Matsas R, Fulcher IS, Kenny AJ, Turner AJ (1983) Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci U S A 80:3111–3115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mcdermott JR, Gibson AM (1997) Degradation of Alzheimer’s beta-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem Res 22:49–56

    Article  CAS  PubMed  Google Scholar 

  • Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, Hersh LB, Thiele DL (2003) Amyloid-beta peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Natl Acad Sci U S A 100:6221–6226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller MC, Tavares R, Johanson CE, Hovanesian V, Donahue JE, Gonzalez L, Silverberg GD, Stopa EG (2008) Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res 1230:273–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakano S, Ikata T, Kinoshita I, Kanematsu J, Yasuoka S (1999a) Characteristics of the protease activity in synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Clin Exp Rheumatol 17:161–170

    CAS  PubMed  Google Scholar 

  • Nakano Y, Kondoh G, Kudo T, Imaizumi K, Kato M, Miyazaki JI, Tohyama M, Takeda J, Takeda M (1999b) Accumulation of murine amyloidbeta42 in a gene-dosage-dependent manner in PS1 ‘knock-in’ mice. Eur J Neurosci 11:2577–2581

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nagase H, Koh CS, Ohkawara T (2011) gamma-Secretase-regulated mechanisms similar to notch signaling may play a role in signaling events, including APP signaling, which leads to Alzheimer’s disease. Cell Mol Neurobiol 31:887–900

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Holtzman DM, Schwartz AL, Bu G (1997) Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem 69:1904–1911

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, Saido TC (2014) Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Abeta peptide. Bioessays 36:570–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson P, Iwata N, Muramatsu S, Tjernberg LO, Winblad B, Saido TC (2010) Gene therapy in Alzheimer’s disease – potential for disease modification. J Cell Mol Med 14:741–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC (2013) Abeta secretion and plaque formation depend on autophagy. Cell Rep 5:61–69.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson P, Sekiguchi M, Akagi T, Izumi S, Komori T, Hui K, Sorgjerd K, Tanaka M, Saito T, Iwata N, Saido TC (2015) Autophagy-related protein 7 deficiency in amyloid beta (Abeta) precursor protein transgenic mice decreases Abeta in the multivesicular bodies and induces Abeta accumulation in the Golgi. Am J Pathol 185:305–13

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    Article  CAS  PubMed  Google Scholar 

  • Ohno M, Sametsky EA, Younkin LH, Oakley H, Younkin SG, Citron M, Vassar R, Disterhoft JF (2004) BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41:27–33

    Article  CAS  PubMed  Google Scholar 

  • Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 273:32730–32738

    Article  CAS  PubMed  Google Scholar 

  • Rajput PS, Kharmate G, Norman M, Liu SH, Sastry BR, Brunicardi CF, Kumar U (2011) Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington’s disease transgenic mice. PLoS One 6:e24467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saido TC (2003) Overview-Abeta metabolism: from Alzheimer research to brain aging control. In: Saido TC (ed) Abeta metabolism and Alzheimer’s disease. Landes Bioscience, Georgetown, USA

    Google Scholar 

  • Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M, Saido TC (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, Nishimura M, Iwata N, Van Broeckhoven C, Ihara Y, Saido TC (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci 14:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC (2014) Single app knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17:661–663

    Article  CAS  PubMed  Google Scholar 

  • Sandebring A, Welander H, Winblad B, Graff C, Tjernberg LO (2013) The pathogenic abeta43 is enriched in familial and sporadic Alzheimer disease. PLoS One 8:e55847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki H, Saito Y, Hayashi M, Otsuka K, Niwa M (1988) Nucleotide sequence of the tissue-type plasminogen activator cDNA from human fetal lung cells. Nucleic Acids Res 16:5695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Savonenko AV, Melnikova T, Laird FM, Stewart KA, Price DL, Wong PC (2008) Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci U S A 105:5585–5590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Solomon B, Koppel R, Hanan E, Katzav T (1996) Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci U S A 93:452–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsubuki S, Takaki Y, Saido TC (2003) Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Abeta to physiologically relevant proteolytic degradation. Lancet 361:1957–1958

    Article  CAS  PubMed  Google Scholar 

  • Turner AJ, Isaac RE, Coates D (2001) The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23:261–269

    Article  CAS  PubMed  Google Scholar 

  • Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, Kunert-Keil C, Walker LC, Warzok RW (2002) Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541

    Article  CAS  PubMed  Google Scholar 

  • Vogelgesang S, Warzok RW, Cascorbi I, Kunert-Keil C, Schroeder E, Kroemer HK, Siegmund W, Walker LC, Pahnke J (2004) The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 1:121–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waksman G, Hamel E, Fournie-Zaluski MC, Roques BP (1986) Autoradiographic comparison of the distribution of the neutral endopeptidase “enkephalinase” and of mu and delta opioid receptors in rat brain. Proc Natl Acad Sci U S A 83:1523–1527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang TL, Chang H, Hung CR, Tseng YZ (1997) Attenuation of neutrophil and endothelial activation by intravenous morphine in patients with acute myocardial infarction. Am J Cardiol 80:1532–1535

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Lee DH, D’andrea MR, Peterson PA, Shank RP, Reitz AB (2000) beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275:5626–5632

    Article  CAS  PubMed  Google Scholar 

  • Wang DS, Iwata N, Hama E, Saido TC, Dickson DW (2003) Oxidized neprilysin in aging and Alzheimer’s disease brains. Biochem Biophys Res Commun 310:236–241

    Article  CAS  PubMed  Google Scholar 

  • Welander H, Franberg J, Graff C, Sundstrom E, Winblad B, Tjernberg LO (2009) Abeta43 is more frequent than Abeta40 in amyloid plaque cores from Alzheimer disease brains. J Neurochem 110:697–706

    Article  CAS  PubMed  Google Scholar 

  • Wirths O, Bayer TA (2012) Intraneuronal Abeta accumulation and neurodegeneration: lessons from transgenic models. Life Sci 91:1148–1152

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517

    Article  CAS  PubMed  Google Scholar 

  • Wong-Leung YL, Kenny AJ (1968) Some properties of a microsomal peptidase in rat kidney. Biochem J 110:5P

    Google Scholar 

  • Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, Pei K, Walker D, Lue LF, Stanimirovic D, Zhang W (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci 29:5463–5475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada T, Kluve-Beckerman B, Liepnieks JJ, Benson MD (1995) In vitro degradation of serum amyloid A by cathepsin D and other acid proteases: possible protection against amyloid fibril formation. Scand J Immunol 41:570–574

    Article  CAS  PubMed  Google Scholar 

  • Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Hu X, Song H, Yin K, Bateman RJ, Cirrito JR, Xiao Q, Hsu FF, Turk JW, Xu J, Hsu CY, Holtzman DM, Lee JM (2006) Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 281:24566–24574

    Article  CAS  PubMed  Google Scholar 

  • Yasojima K, Akiyama H, Mcgeer EG, Mcgeer PL (2001a) Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of beta-amyloid peptide. Neurosci Lett 297:97–100

    Article  CAS  PubMed  Google Scholar 

  • Yasojima K, Mcgeer EG, Mcgeer PL (2001b) Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res 919:115–121

    Article  CAS  PubMed  Google Scholar 

  • Zou K, Yamaguchi H, Akatsu H, Sakamoto T, Ko M, Mizoguchi K, Gong JS, Yu W, Yamamoto T, Kosaka K, Yanagisawa K, Michikawa M (2007) Angiotensin-converting enzyme converts amyloid beta-protein 1-42 (Abeta(1-42)) to Abeta(1-40), and its inhibition enhances brain Abeta deposition. J Neurosci 27:8628–8635

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaomi C. Saido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hashimoto, S., Nilsson, P., Saido, T.C. (2015). Catabolism and Anabolism of Amyloid-β. In: Mori, N., Mook-Jung, I. (eds) Aging Mechanisms. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55763-0_19

Download citation

Publish with us

Policies and ethics