Knowledge of Signal Transduction Provides an Approach to Attacking Memory Decline

  • Shuichi Yanai
  • Shogo EndoEmail author


Memory, the basis of higher cognitive functions, has been a major topic of interest for a very long time. One of the major setbacks most of us face as we age is a decline in declarative memory, which mainly depends on a brain structure called the hippocampus. Because memory decline has such a negative impact on quality of our life, intense efforts are being directed toward finding therapeutic interventions to ameliorate or even prevent memory decline. A major focus is on molecular targets to improve or maintain memory. Through the knowledge obtained from extensive study of amnesic patients and rapid progress in modern biochemical and neurosciences, the molecular mechanisms underpinning learning and memory and neural plasticity in the central nervous system have been revealed. In this review, we present a brief summary of memory characteristics in psychological terms, followed by a discussion of the basic concept of the memory system, its underlying cellular mechanisms, and age-related decline in memory. Anti-dementia drugs developed on the basis of the cholinergic hypothesis are also discussed. Finally, we assess the use of phosphodiesterase inhibitors, which control the cAMP-PKA-CREB signal transduction pathway, as potential candidates for treating memory decline beyond the existing cholinergic-based strategies.


Memory Learning Attention cAMP PKA CREB ICER ACh PDE 



This work was supported in part by Japan Foundation of Aging and Health, the Naito Foundation, JSPS KAKENHI (24730642, 25293331, 25560382, 26115532, 15H03103), and Otsuka Pharmaceutical Co., Ltd.


  1. Appel SH (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol 10:499–505PubMedCrossRefGoogle Scholar
  2. Arai H, Takahashi T (2009) A combination therapy of donepezil and cilostazol for patients with moderate Alzheimer disease: pilot follow-up study. Am J Geriatr Psychiatry 17:353–354PubMedCrossRefGoogle Scholar
  3. Atkinson RC, Shifrin RM (1968) Human memory. A proposed system and its control processes. In: Spence KW, Spence JT (eds) The psychology of learning and motivation: advances in research and theory, vol 2. Academic, New York, pp 85–195Google Scholar
  4. Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD, Kandel ER (1999) Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci U S A 96:5280–5285PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93:74–104PubMedCrossRefGoogle Scholar
  6. Bartsch D, Ghirardi M, Skehel PA, Karl KA, Herder SP, Chen M, Bailey CH, Kandel ER (1995) Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell 83:979–992PubMedCrossRefGoogle Scholar
  7. Bartsch D, Casadio A, Karl KA, Serodio P, Kandel ER (1998) CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation. Cell 95:211–223PubMedCrossRefGoogle Scholar
  8. Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414PubMedCrossRefGoogle Scholar
  9. Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 1:CD005593PubMedGoogle Scholar
  10. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  11. Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMedCentralPubMedCrossRefGoogle Scholar
  12. Borlikova G, Endo S (2009) Inducible cAMP early repressor (ICER) and brain functions. Mol Neurobiol 40:73–86PubMedCentralPubMedCrossRefGoogle Scholar
  13. Bullock R, Bergman H, Touchon J, Gambina G, He Y, Nagel J, Lane R (2006) Effect of age on response to rivastigmine or donepezil in patients with Alzheimer’s disease. Curr Med Res Opin 22:483–494PubMedCrossRefGoogle Scholar
  14. Burgers PM, Eckstein F, Hunneman DH (1979) Stereochemistry of hydrolysis by snake venom phosphodiesterase. J Biol Chem 254:7476–7478PubMedGoogle Scholar
  15. Chakraborty R, Vepuri V, Mhatre SD, Paddock BE, Miller S, Michelson SJ, Delvadia R, Desai A, Vinokur M, Melicharek DJ, Utreja S, Khandelwal P, Ansaloni S, Goldstein LE, Moir RD, Lee JC, Tabb LP, Saunders AJ, Marenda DR (2011) Characterization of a Drosophila Alzheimer’s disease model: pharmacological rescue of cognitive defects. PLoS One 6:e20799PubMedCentralPubMedCrossRefGoogle Scholar
  16. Croom KF, Dhillon S (2011) Bevacizumab: a review of its use in combination with paclitaxel or capecitabine as first-line therapy for HER2-negative metastatic breast cancer. Drugs 71:2213–2229PubMedCrossRefGoogle Scholar
  17. Danion JM, Huron C, Vidailhet P, Berna F (2007) Functional mechanisms of episodic memory impairment in schizophrenia. Can J Psychiatry 52:693–701PubMedGoogle Scholar
  18. Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721PubMedCrossRefGoogle Scholar
  19. Dell’Osso L, Carmassi C, Massimetti G, Daneluzzo E, Di Tommaso S, Rossi A (2011) Full and partial PTSD among young adult survivors 10 months after the L’Aquila 2009 earthquake: gender differences. J Affect Disord 131:79–83PubMedCrossRefGoogle Scholar
  20. Dong H, Yuede CM, Coughlan CA, Murphy KM, Csernansky JG (2009) Effects of donepezil on amyloid-beta and synapse density in the Tg2576 mouse model of Alzheimer’s disease. Brain Res 1303:169–178PubMedCentralPubMedCrossRefGoogle Scholar
  21. Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. A relationship to aging? Arch Neurol 30:113–121PubMedCrossRefGoogle Scholar
  22. Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89:4363–4367PubMedCentralPubMedCrossRefGoogle Scholar
  23. Ebbinghaus H (1885) Memory: a contribution to experimental psychology (trans: Ruger HA and Bussenius CE, 1913). Dover, New YorkGoogle Scholar
  24. Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 1:41–50PubMedCrossRefGoogle Scholar
  25. Endo S (2012) Potential therapeutic targets for memory impairments and dementia: clues obtained from memory-enhanced mice. In: Thakur MH, Rattan SIS (eds) Brain aging, therapeutic interventions. Springer, Dordrecht, pp 219–238Google Scholar
  26. Florian C, Mons N, Roullet P (2006) CREB antisense oligodeoxynucleotide administration into the dorsal hippocampal CA3 region impairs long- but not short-term spatial memory in mice. Learn Mem 13:465–472PubMedCentralPubMedCrossRefGoogle Scholar
  27. Franceschi RT, Xiao G (2003) Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88:446–454PubMedCrossRefGoogle Scholar
  28. Fusco S, Ripoli C, Podda MV, Ranieri SC, Leone L, Toietta G, McBurney MW, Schütz G, Riccio A, Grassi C, Galeotti T, Pani G (2012) A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci U S A 109:621–626PubMedCentralPubMedCrossRefGoogle Scholar
  29. Gibson GE, Peterson C, Jenden DJ (1981) Brain acetylcholine synthesis declines with senescence. Science 213:674–676PubMedCrossRefGoogle Scholar
  30. Glucksberg S, Cowen GN Jr (1970) Memory for nonattended auditory material. Cogn Psychol 1:149–156CrossRefGoogle Scholar
  31. Goldberg ND, Walseth TF, Stephenson JH, Krick TP, Graff G (1980) 18O-Labeling of guanosine monophosphate upon hydrolysis of cyclic guanosine 3′:5′-monophosphate by phosphodiesterase. J Biol Chem 255:10344–10347PubMedGoogle Scholar
  32. Haas BW, Canli T (2008) Emotional memory function, personality structure and psychopathology: a neural system approach to the identification of vulnerability markers. Brain Res Rev 58:71–84PubMedCentralPubMedCrossRefGoogle Scholar
  33. Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  34. Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5:87–96PubMedCrossRefGoogle Scholar
  35. Hedden T, Van Dijk KR, Shire EH, Sperling RA, Johnson KA, Buckner RL (2012) Failure to modulate attentional control in advanced aging linked to white matter pathology. Cereb Cortex 22:1038–1051PubMedCentralPubMedCrossRefGoogle Scholar
  36. Hiramatsu M, Takiguchi O, Nishiyama A, Mori H (2010) Cilostazol prevents amyloid β peptide(25–35)-induced memory impairment and oxidative stress in mice. Br J Pharmacol 161:1899–1912PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102PubMedCrossRefGoogle Scholar
  38. Huang YY, Kandel ER (2006) Age-related enhancement of a protein synthesis-dependent late phase of LTP induced by low frequency paired-pulse stimulation in hippocampus. Learn Mem 13:298–306PubMedCentralPubMedCrossRefGoogle Scholar
  39. Ihara M, Nishino M, Taguchi A, Yamamoto Y, Hattori Y, Saito S, Takahashi Y, Tsuji M, Kasahara Y, Takata Y, Okada M (2014) Cilostazol add-on therapy in patients with mild dementia receiving donepezil: a retrospective study. PLoS One 9:e89516PubMedCentralPubMedCrossRefGoogle Scholar
  40. Ito M (2011) The cerebellum: brain for an implicit self. FT Press, Upper Saddle RiverGoogle Scholar
  41. Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113–134PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ito M, Yamaguchi K, Nagao S, Yamazaki T (2014) Long-term depression as a model of cerebellar plasticity. Prog Brain Res 210:1–30PubMedCrossRefGoogle Scholar
  43. Kaang BK, Kandel ER, Grant SG (1993) Activation of cAMP-responsive genes by stimuli that produce long-term facilitation in Aplysia sensory neurons. Neuron 10:427–435PubMedCrossRefGoogle Scholar
  44. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038PubMedCrossRefGoogle Scholar
  45. Kida S, Josselyn SA, Peña de Ortiz S, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355PubMedCrossRefGoogle Scholar
  46. Kidd PM (2008) Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev 13:85–115PubMedGoogle Scholar
  47. Kojima N, Borlikova G, Sakamoto T, Yamada K, Ikeda T, Itohara S, Niki H, Endo S (2008) Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory. J Neurosci 28:6459–6472PubMedCrossRefGoogle Scholar
  48. Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–972PubMedCrossRefGoogle Scholar
  49. Lee JH, Park SY, Shin YW, Kim CD, Lee WS, Hong KW (2007) Concurrent administration of cilostazol with donepezil effectively improves cognitive dysfunctionwith increased neuroprotection after chronic cerebral hypoperfusion in rats. Brain Res 1185:246–255PubMedCrossRefGoogle Scholar
  50. Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E (2009) Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the Morris water maze. Brain Res 1256:69–75PubMedCrossRefGoogle Scholar
  51. Link CD, Taft A, Kapulkin V, Duke K, Kim S, Fei Q, Wood DE, Sahagan BG (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24:397–413PubMedCrossRefGoogle Scholar
  52. Llinás R, Lang EJ, Welsh JP (1997) The cerebellum, LTD, and memory: alternative views. Learn Mem 3:445–455PubMedCrossRefGoogle Scholar
  53. Longo VG (1966) Behavioral and electroencephalographic effects of atropine and related compounds. Pharmacol Rev 18:965–996PubMedGoogle Scholar
  54. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136PubMedCrossRefGoogle Scholar
  55. Lynch G, Browning M, Bennett WF (1979) Biochemical and physiological studies of long-term synaptic plasticity. Fed Proc 38:2117–2122PubMedGoogle Scholar
  56. Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538PubMedCrossRefGoogle Scholar
  57. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21PubMedCrossRefGoogle Scholar
  58. Malenka RC, Lancaster B, Zucker RS (1992) Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron 9:121–128PubMedCrossRefGoogle Scholar
  59. Malinow R, Madison DV, Tsien RW (1988) Persistent protein kinase activity underlying long-term potentiation. Nature 335:820–824PubMedCrossRefGoogle Scholar
  60. Mhatre SD, Satyasi V, Killen M, Paddock BE, Moir RD, Saunders AJ, Marenda DR (2014) Synaptic abnormalities in a Drosophila model of Alzheimer’s disease. Dis Model Mech 7:373–385PubMedCentralPubMedCrossRefGoogle Scholar
  61. Miller GA (1956) The magical number even, plus or minus two: some limits of our capacity for processing information. Psychol Rev 63:81–97PubMedCrossRefGoogle Scholar
  62. Miller S, Mayford M (1999) Cellular and molecular mechanisms of memory: the LTP connection. Curr Opin Genet Dev 9:333–937PubMedCrossRefGoogle Scholar
  63. Milner B (1962) Les troubles de la memoire accompagnant des lesions hippocampiques bilaterales. In: Physiologie de I’hippocampe. Le Centre National de la Recherche Scientifique, Paris, pp 257–282Google Scholar
  64. Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20:445–468PubMedCrossRefGoogle Scholar
  65. Mulkey RM, Endo S, Shenolikar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486–488PubMedCrossRefGoogle Scholar
  66. O’Donnell ME, Badger SA, Sharif MA, Young IS, Lee B, Soong CV (2009) The vascular and biochemical effects of cilostazol in patients with peripheral arterial disease. J Vasc Surg 49:1226–1234PubMedCrossRefGoogle Scholar
  67. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, OxfordGoogle Scholar
  68. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421PubMedCrossRefGoogle Scholar
  69. Olton DS, Becker JT, Handelmann GE (1979) Hippocampus, space, and memory. Behav Brain Sci 2:313–365CrossRefGoogle Scholar
  70. Ota KT, Pierre VJ, Ploski JE, Queen K, Schafe GE (2008) The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase. Learn Mem 15:792–805PubMedCentralPubMedCrossRefGoogle Scholar
  71. Park SH, Kim JH, Bae SS, Hong KW, Lee DS, Leem JY, Choi BT, Shin HK (2011) Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation. Biochem Biophys Res Commun 408:602–608PubMedCrossRefGoogle Scholar
  72. Parsons CG, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist – a review of preclinical data. Neuropharmacology 38:735–767PubMedCrossRefGoogle Scholar
  73. Passmore MJ, Ho A, Gallagher R (2012) Behavioral and psychological symptoms in moderate to severe Alzheimer’s disease: a palliative care approach emphasizing recognition of personhood and preservation of dignity. J Alzheimers Dis 29:1–13PubMedGoogle Scholar
  74. Patterson C, Feightner JW, Garcia A, Hsiung GY, MacKnight C, Sadovnick AD (2008) Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ 178:548–556PubMedCentralPubMedCrossRefGoogle Scholar
  75. Pepeu G, Giovannini MG (2009) Cholinesterase inhibitors and beyond. Curr Alzheimers Res 6:86–96CrossRefGoogle Scholar
  76. Perez-Gonzalez R, Pascual C, Antequera D, Bolos M, Redondo M, Perez DI, Pérez-Grijalba V, Krzyzanowska A, Sarasa M, Gil C, Ferrer I, Martinez A, Carro E (2013) Phosphodiesterase 7 inhibitor reduced cognitive impairment and pathological hallmarks in a mouse model of Alzheimer’s disease. Neurobiol Aging 34:2133–2145PubMedCrossRefGoogle Scholar
  77. Peterson LR, Peterson MJ (1959) Short-term retention of individual verbal items. J Exp Psychol 58:193–198PubMedCrossRefGoogle Scholar
  78. Pfennig A, Littmann E, Bauer M (2007) Neurocognitive impairment and dementia in mood disorders. J Neuropsychiatry Clin Neurosci 19:373–382PubMedCrossRefGoogle Scholar
  79. Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL, Steffens DC, Willis RJ, Wallace RB (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 29:125–132PubMedCentralPubMedCrossRefGoogle Scholar
  80. Prakash RS, Erickson KI, Colcombe SJ, Kim JS, Voss MW, Kramer AF (2009) Age-related differences in the involvement of the prefrontal cortex in attentional control. Brain Cogn 71:328–335PubMedCentralPubMedCrossRefGoogle Scholar
  81. Prickaerts J, Sik A, van der Staay FJ, de Vente J, Blokland A (2005) Dissociable effects of acetylcholinesterase inhibitors and phosphodiesterase type 5 inhibitors on object recognition memory: acquisition versus consolidation. Psychopharmacology (Berl) 177:381–390CrossRefGoogle Scholar
  82. Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J (2009) Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl) 202:419–443CrossRefGoogle Scholar
  83. Richter W, Menniti FS, Zhang HT, Conti M (2013) PDE4 as a target for cognition enhancement. Expert Opin Ther Targets 17:1011–1027PubMedCentralPubMedCrossRefGoogle Scholar
  84. Riepe MW, Kohler J, Horn R (2007) Donepezil in Alzheimer’s disease: a clinical observational study evaluating individual treatment response. Curr Med Res Opin 23:1829–1835PubMedCrossRefGoogle Scholar
  85. Robinson DM, Keating GM (2006) Memantine: a review of its use in Alzheimer’s disease. Drugs 66:1515–1534PubMedCrossRefGoogle Scholar
  86. Rogers SL, Doody RS, Mohs RC, Friedhoff LT (1998) Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med 158:1021–1031PubMedCrossRefGoogle Scholar
  87. Romberg C, Mattson MP, Mughal MR, Bussey TJ, Saksida LM (2011) Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J Neurosci 31:3500–3507PubMedCentralPubMedCrossRefGoogle Scholar
  88. Rose GM, Hopper A, De Vivo M, Tehim A (2005) Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 11:3329–3334PubMedCrossRefGoogle Scholar
  89. Scalco MZ, Van Reekum R (2006) Prevention of Alzheimer disease. Encouraging evidence. Can Fam Physician 52:200–207PubMedCentralPubMedGoogle Scholar
  90. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21PubMedCentralPubMedCrossRefGoogle Scholar
  91. Sekiguchi A, Sugiura M, Taki Y, Kotozaki Y, Nouchi R, Takeuchi H, Araki T, Hanawa S, Nakagawa S, Miyauchi CM, Sakuma A, Kawashima R (2013) Brain structural changes as vulnerability factors and acquired signs of post-earthquake stress. Mol Psychiatry 18:618–623PubMedCrossRefGoogle Scholar
  92. Sierksma AS, Rutten K, Sydlik S, Rostamian S, Steinbusch HW, Van den Hove DL, Prickaerts J (2013) Chronic phosphodiesterase type 2 inhibition improves memory in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neuropharmacology 64:124–136PubMedCrossRefGoogle Scholar
  93. Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23:75–80PubMedCrossRefGoogle Scholar
  94. Sperling G (1960) The information available in brief visual presentations. Psychol Monogr Gen Appl 74:1–29CrossRefGoogle Scholar
  95. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231PubMedCrossRefGoogle Scholar
  96. Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177PubMedCrossRefGoogle Scholar
  97. Squire LR, Zola SM (1996) Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci U S A 93:13515–13522PubMedCentralPubMedCrossRefGoogle Scholar
  98. Squire LR, Zola SM (1998) Episodic memory, semantic memory, and amnesia. Hippocampus 8:205–211PubMedCrossRefGoogle Scholar
  99. Strada SJ, Uzunov P, Weiss B (1974) Ontogenic development of a phosphodiesterase activator and the multiple forms of cyclic AMP phosphodiesterase of rat brain. J Neurochem 23:1097–1103PubMedCrossRefGoogle Scholar
  100. Suzuki A, Fukushima H, Mukawa T, Toyoda H, Wu LJ, Zhao MG, Xu H, Shang Y, Endoh K, Iwamoto T, Mamiya N, Okano E, Hasegawa S, Mercaldo V, Zhang Y, Maeda R, Ohta M, Josselyn SA, Zhuo M, Kida S (2011) Upregulation of CREB-mediated transcription enhances both short- and long-term memory. J Neurosci 31:8786–8802PubMedCrossRefGoogle Scholar
  101. Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C (2000) A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology 54:2269–2276PubMedCrossRefGoogle Scholar
  102. Tenor H, Hatzelmann A, Beume R, Lahu G, Zech K, Bethke TD (2011) Pharmacology, clinical efficacy, and tolerability of phosphodiesterase-4 inhibitors: impact of human pharmacokinetics. In: Francis SH, Conti M, Houslay MD (eds) Phosphodiesterase as drug targets. Springer, New York, pp 85–119CrossRefGoogle Scholar
  103. Terry AV Jr, Callahan PM, Hall B, Webster SJ (2011) Alzheimer’s disease and age-related memory decline (preclinical). Pharmacol Biochem Behav 99:190–210PubMedCentralPubMedCrossRefGoogle Scholar
  104. Tröster AI (2008) Neuropsychological characteristics of dementia with Lewy bodies and Parkinson’s disease with dementia: differentiation, early detection, and implications for “mild cognitive impairment” and biomarkers. Neuropsychol Rev 18:103–119PubMedCrossRefGoogle Scholar
  105. Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8:198–204PubMedCrossRefGoogle Scholar
  106. Uzunov P, Weiss B (1972) Separation of multiple molecular forms of cyclic adenosine-3′,5′-monophosphate phosphodiesterase in rat cerebellum by polyacrylamide gel electrophoresis. Biochim Biophys Acta 284:220–226PubMedCrossRefGoogle Scholar
  107. Van der Staay FJ, Rutten K, Bärfacker L, Devry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, Van Kampen M, Blokland A, Prickaerts J, Reymann KG, Schröder UH, Hendrix M (2008) The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology 55:908–918PubMedCrossRefGoogle Scholar
  108. Van Marum RJ (2009) Update on the use of memantine in Alzheimer’s disease. Neuropsychiatr Dis Treat 5:237–247PubMedCentralPubMedCrossRefGoogle Scholar
  109. Yanai S, Semba Y, Ito H, Endo S (2014) Cilostazol improves hippocampus-dependent long-term memory in mice. Psychopharmacology (Berl) 231:2681–2693CrossRefGoogle Scholar
  110. Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, Kaiser KM, Köster HJ, Borchardt T, Worley P, Lübke J, Frotscher M, Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284:1805–1811PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Memory Neuroscience, Aging Neuroscience Research TeamTokyo Metropolitan Institute of GerontologyItabashiJapan

Personalised recommendations