Advertisement

Vitamin K Benefits in Aging and Cancer

  • Kotaro Azuma
  • Satoshi InoueEmail author

Abstract

Vitamin K is well known as a critical blood coagulation factor. In addition, epidemiological studies suggest that reduced vitamin K intake is associated with several geriatric diseases, such as osteoporosis, osteoarthritis, dementia, and arteriosclerosis. Indeed, the therapeutic benefits of vitamin K have been demonstrated in osteoporosis patients in several clinical studies. It has also been proposed that vitamin K may contribute to the prevention and treatment of some types of malignancies. Vitamin K functions as a co-factor of γ-glutamyl carboxylase (GGCX) and regulates the activity of vitamin K-dependent proteins expressed in various tissues via posttranscriptional modifications. As an additional mechanism of vitamin K action, we revealed that vitamin K activates the Steroid and Xenobiotic receptor (SXR), a member of nuclear receptor superfamily, leading to changes in gene transcription. Analysis of the bones of pregnane X receptor (PXR)-deficient mice demonstrated that the bone protective effects of vitamin K are partially mediated by SXR/PXR-dependent signaling. In certain malignancies, vitamin K exerts therapeutic activity in an SXR/PXR-dependent manner. Another distinct function of vitamin K involves apoptotic induction of leukemia cells, which may be attributed to the covalent association of vitamin K2 epoxide with pro-apoptotic protein Bak. The progress of vitamin K research has opened up new possibilities that vitamin K can be useful for prevention and treatment of a variety of diseases.

Keywords

Vitamin K Steroid and xenobiotic receptor (SXR) Pregnane X receptor (PXR) γ-glutamyl carboxylase (GGCX) Aging Osteoporosis Osteoarthritis Alzheimer’s disease Cancer 

Notes

Acknowledgments

This work was supported by Grants-in-Aid from the MHLW, Cell Innovation Program and Grants-in-Aid from the MEXT, the Program for Promotion of Fundamental Studies in Health Sciences from the NIBIO, a grant from the Novartis Foundation for Gerontological Research, and also, in part, by the Asian CORE program of JSPS.

References

  1. Albermann N, Schmitz-Winnenthal FH, Z’graggen K, Volk C, Hoffmann MM, Haefeli WE, Weiss J (2005) Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 70:949–958CrossRefPubMedGoogle Scholar
  2. Azuma K, Urano T, Ouchi Y, Inoue S (2009) Vitamin K2 suppresses proliferation and motility of hepatocellular carcinoma cells by activating steroid and xenobiotic receptor. Endocr J 56:843–849CrossRefPubMedGoogle Scholar
  3. Azuma K, Casey SC, Ito M, Urano T, Horie K, Ouchi Y, Kirchner S, Blumberg B, Inoue S (2010) Pregnane X receptor knockout mice display osteopenia with reduced bone formation and enhanced bone resorption. J Endocrinol 207:257–263PubMedCentralCrossRefPubMedGoogle Scholar
  4. Azuma K, Tsukui T, Ikeda K, Shiba S, Nakagawa K, Okano T, Urano T, Horie-Inoue K, Ouchi Y, Ikawa M, Inoue S (2014) Liver-specific γ-glutamyl carboxylase-deficient mice display bleeding diathesis and short life span. PLoS One 9:e88643PubMedCentralCrossRefPubMedGoogle Scholar
  5. Berkner KL, Pudota BN (1984) Vitamin K-dependent carboxylation of the carboxylase. Proc Natl Acad Sci U S A 95:466–471CrossRefGoogle Scholar
  6. Beulens JW, Bots ML, Atsma F, Bartelink ML, Prokop M, Geleijnse JM, Witteman JC, Grobbee DE, van der Schouw YT (2009) High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis 203:489–493CrossRefPubMedGoogle Scholar
  7. Blumberg B, Sabbagh W Jr, Juguilon H, Bolado J Jr, van Meter CM, Ong ES, Evans RM (1998) SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev 12:3195–3205PubMedCentralCrossRefPubMedGoogle Scholar
  8. Booth SL, Suttie JW (1998) Dietary intake and adequacy of vitamin K. J Nutr 128:785–788PubMedGoogle Scholar
  9. Casey SC, Nelson EL, Turco GM, Janes MR, Fruman DA, Blumberg B (2011) B-1 cell lymphoma in mice lacking the steroid and xenobiotic receptor, SXR. Mol Endocrinol 25:933–943PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cheung AM, Tile L, Lee Y, Tomlinson G, Hawker G, Scher J, Hu H, Vieth R (2008) Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med 5:e196CrossRefPubMedGoogle Scholar
  11. Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ (2006) Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 166:1256–1261CrossRefPubMedGoogle Scholar
  12. Coutu DL, Wu JH, Monette A, Rivard GE, Blostein MD, Galipeau J (2008) Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem 283:17991–18001CrossRefPubMedGoogle Scholar
  13. Dam H (1935) The antihemorrhagic vitamin of the chick: occurrence and chemical nature. Nature 135:652–653CrossRefGoogle Scholar
  14. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452CrossRefPubMedGoogle Scholar
  15. Enomoto M, Tsuchida A, Miyazawa K, Yokoyama T, Kawakita H, Tokita H, Naito M, Itoh M, Ohyashiki K, Aoki T (2007) Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines. Int J Mol Med 20:801–808PubMedGoogle Scholar
  16. Filipp D, Alizadeh-Khiavi K, Richardson C, Palma A, Paredes N, Takeuchi O, Akira S, Julius M (2001) Soluble CD14 enriched in colostrum and milk induces B cell growth and differentiation. Proc Natl Acad Sci U S A 98:603–608PubMedCentralCrossRefPubMedGoogle Scholar
  17. Fujimura T, Takahashi S, Urano T, Tanaka T, Zhang W, Azuma K, Takayama K, Obinata D, Murata T, Horie-Inoue K, Kodama T, Ouchi Y, Homma Y, Inoue S (2012) Clinical significance of steroid and xenobiotic receptor and its targeted gene CYP3A4 in human prostate cancer. Cancer Sci 103:176–180CrossRefPubMedGoogle Scholar
  18. Gast GC, de Roos NM, Sluijs I, Bots ML, Beulens JW, Geleijnse JM, Witteman JC, Grobbee DE, Peeters PH, van der Schouw YT (2009) A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis 19:504–510CrossRefPubMedGoogle Scholar
  19. Habu D, Shiomi S, Tamori A, Takeda T, Tanaka T, Kubo S, Nishiguchi S (2004) Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver. JAMA 292:358–361CrossRefPubMedGoogle Scholar
  20. Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S (2006) Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J Biol Chem 281:16927–16934CrossRefPubMedGoogle Scholar
  21. Kakizaki S, Sohara N, Sato K, Suzuki H, Yanagisawa M, Nakajima H, Takagi H, Naganuma A, Otsuka T, Takahashi H, Hamada T, Mori M (2007) Preventive effects of vitamin K on recurrent disease in patients with hepatocellular carcinoma arising from hepatitis C viral infection. J Gastroenterol Hepatol 22:518–522CrossRefPubMedGoogle Scholar
  22. Kaneki M, Hodges SJ, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi M, Sano Y, Mizuno Y, Hoshino S, Miyao M, Inoue S, Horiki K, Shiraki M, Ouchi Y, Orimo H (2001) Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 17:315–321CrossRefPubMedGoogle Scholar
  23. Karasawa S, Azuma M, Kasama T, Sakamoto S, Kabe Y, Imai T, Yamaguchi Y, Miyazawa K, Handa H (2013) Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis. Mol Pharmacol 83:613–620CrossRefPubMedGoogle Scholar
  24. Kawakita H, Tsuchida A, Miyazawa K, Naito M, Shigoka M, Kyo B, Enomoto M, Wada T, Katsumata K, Ohyashiki K, Itoh M, Tomoda A, Aoki T (2009) Growth inhibitory effects of vitamin K2 on colon cancer cell lines via different types of cell death including autophagy and apoptosis. Int J Mol Med 23:709–716PubMedGoogle Scholar
  25. Kinoshita H, Nakagawa K, Narusawa K, Goseki-Sone M, Fukushi-Irie M, Mizoi L, Yoshida H, Okano T, Nakamura T, Suzuki T, Inoue S, Orimo H, Ouchi Y, Hosoi T (2007) A functional single nucleotide polymorphism in the vitamin-K-dependent gamma-glutamyl carboxylase gene (Arg325Gln) is associated with bone mineral density in elderly Japanese women. Bone 40:451–456CrossRefPubMedGoogle Scholar
  26. Kulman JD, Harris JE, Haldeman BA, Davie EW (1997) Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins. Proc Natl Acad Sci U S A 94:9058–9062PubMedCentralCrossRefPubMedGoogle Scholar
  27. Kulman JD, Harris JE, Xie L, Davie EW (2001) Identification of two novel transmembrane gamma-carboxyglutamic acid proteins expressed broadly in fetal and adult tissues. Proc Natl Acad Sci U S A 98:1370–1375PubMedCentralCrossRefPubMedGoogle Scholar
  28. Lamson DW, Plaza SM (2003) The anticancer effects of vitamin K. Altern Med Rev 8:303–318PubMedGoogle Scholar
  29. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81CrossRefPubMedGoogle Scholar
  30. Ma M, Qu XJ, Mu GY, Chen MH, Cheng YN, Kokudo N, Tang W, Cui SX (2009) Vitamin K2 inhibits the growth of hepatocellular carcinoma via decrease of des-gamma-carboxy prothrombin. Chemotherapy 55:28–35CrossRefPubMedGoogle Scholar
  31. Manabe N, Kawaguchi H, Chikuda H, Miyaura C, Inada M, Nagai R, Nabeshima Y, Nakamura K (2001) Connection between B lymphocyte and osteoclast differentiation pathways. J Immunol 167:2625–2631CrossRefPubMedGoogle Scholar
  32. McIntosh JM, Olivera BM, Cruz LJ, Gray WR (1984) Gamma-carboxyglutamate in a neuroactive toxin. J Biol Chem 259:14343–14346PubMedGoogle Scholar
  33. Miki Y, Suzuki T, Tazawa C, Blumberg B, Sasano H (2005) Steroid and xenobiotic receptor (SXR), cytochrome P450 3A4 and multidrug resistance gene 1 in human adult and fetal tissues. Mol Cell Endocrinol 231:75–85CrossRefPubMedGoogle Scholar
  34. Miki Y, Suzuki T, Kitada K, Yabuki N, Shibuya R, Moriya T, Ishida T, Ohuchi N, Blumberg B, Sasano H (2006) Expression of the steroid and xenobiotic receptor and its possible target gene, organic anion transporting polypeptide-A, in human breast carcinoma. Cancer Res 66:535–542CrossRefPubMedGoogle Scholar
  35. Misra D, Booth SL, Tolstykh I, Felson DT, Nevitt MC, Lewis CE, Torner J, Neogi T (2013) Vitamin K deficiency is associated with incident knee osteoarthritis. Am J Med 126:243–248PubMedCentralCrossRefPubMedGoogle Scholar
  36. Miyazawa K, Nishimaki J, Ohyashiki K, Enomoto S, Kuriya S, Fukuda R, Hotta T, Teramura M, Mizoguchi H, Uchiyama T, Omine M (2000) Vitamin K2 therapy for myelodysplastic syndromes (MDS) and post-MDS acute myeloid leukemia: information through a questionnaire survey of multi-center pilot studies in Japan. Leukemia 14:1156–1157CrossRefPubMedGoogle Scholar
  37. Mizuta T, Ozaki I, Eguchi Y, Yasutake T, Kawazoe S, Fujimoto K, Yamamoto K (2006) The effect of menatetrenone, a vitamin K2 analog, on disease recurrence and survival in patients with hepatocellular carcinoma after curative treatment: a pilot study. Cancer 106:867–872CrossRefPubMedGoogle Scholar
  38. Morris DP, Stevens RD, Wright DJ, Stafford DW (1995) Processive post-translational modification. Vitamin K-dependent carboxylation of a peptide substrate. J Biol Chem 270:30491–30498CrossRefPubMedGoogle Scholar
  39. Murshed M, Schinke T, McKee MD, Karsenty G (2004) Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625–630PubMedCentralCrossRefPubMedGoogle Scholar
  40. Nakagawa K, Hirota Y, Sawada N, Yuge N, Watanabe M, Uchino Y, Okuda N, Shimomura Y, Suhara Y, Okano T (2010) Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468:117–121CrossRefPubMedGoogle Scholar
  41. Nelsestuen GL, Zytkovicz TH, Howard JB (1974) The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem 249:6347–6350PubMedGoogle Scholar
  42. Neogi T, Booth SL, Zhang YQ, Jacques PF, Terkeltaub R, Aliabadi P, Felson DT (2006) Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum 54:1255–1261CrossRefPubMedGoogle Scholar
  43. Neogi T, Felson DT, Sarno R, Booth SL (2008) Vitamin K in hand osteoarthritis: results from a randomized clinical trial. Ann Rheum Dis 67:1570–1573PubMedCentralCrossRefPubMedGoogle Scholar
  44. Nimptsch K, Rohrmann S, Kaaks R, Linseisen J (2010) Dietary vitamin K intake in relation to cancer incidence and mortality: results from the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am J Clin Nutr 91:1348–1358CrossRefPubMedGoogle Scholar
  45. Ohta K, Lupo G, Kuriyama S, Keynes R, Holt CE, Harris WA, Tanaka H, Ohnuma S (2004) Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin. Dev Cell 7:347–358PubMedCentralCrossRefPubMedGoogle Scholar
  46. Oka H, Akune T, Muraki S, En-yo Y, Yoshida M, Saika A, Sasaki S, Nakamura K, Kawaguchi H, Yoshimura N (2009) Association of low dietary vitamin K intake with radiographic knee osteoarthritis in the Japanese elderly population: dietary survey in a population-based cohort of the ROAD study. J Orthop Sci 14:687–692CrossRefPubMedGoogle Scholar
  47. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, Nakagawa K (2008) Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J Biol Chem 283:11270–11279CrossRefPubMedGoogle Scholar
  48. Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A 73:1447–1451PubMedCentralCrossRefPubMedGoogle Scholar
  49. Rezaie AR, Bae JS, Manithody C, Qureshi SH, Yang L (2008) Protein Z-dependent protease inhibitor binds to the C-terminal domain of protein Z. J Biol Chem 283:19922–19926PubMedCentralCrossRefPubMedGoogle Scholar
  50. Roman-Roman S, Garcia T, Jackson A, Theilhaber J, Rawadi G, Connolly T, Spinella-Jaegle S, Kawai S, Courtois B, Bushnell S, Auberval M, Call K, Baron R (2003) Identification of genes regulated during osteoblastic differentiation by genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 32:474–482CrossRefPubMedGoogle Scholar
  51. Rüggeberg S, Horn P, Li X, Vajkoczy P, Franz T (2008) Detection of a gamma-carboxy-glutamate as novel post-translational modification of human transthyretin. Protein Pept Lett 15:43–46CrossRefPubMedGoogle Scholar
  52. Sada E, Abe Y, Ohba R, Tachikawa Y, Nagasawa E, Shiratsuchi M, Takayanagi R (2010) Vitamin K2 modulates differentiation and apoptosis of both myeloid and erythroid lineages. Eur J Haematol 85:538–548CrossRefPubMedGoogle Scholar
  53. Shatenstein B, Kergoat MJ, Reid I (2007) Poor nutrient intakes during 1-year follow-up with community-dwelling older adults with early-stage Alzheimer dementia compared to cognitively intact matched controls. J Am Diet Assoc 107:2091–2099CrossRefPubMedGoogle Scholar
  54. Shea MK, O’Donnell CJ, Hoffmann U, Dallal GE, Dawson-Hughes B, Ordovas JM, Price PA, Williamson MK, Booth SL (2009) Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am J Clin Nutr 89:1799–1807PubMedCentralCrossRefPubMedGoogle Scholar
  55. Son BK, Kozaki K, Iijima K, Eto M, Kojima T, Ota H, Senda Y, Maemura K, Nakano T, Akishita M, Ouchi Y (2006) Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway. Circ Res 98:1024–1031CrossRefPubMedGoogle Scholar
  56. Stafford DW (2005) The vitamin K cycle. J Thromb Haemost 3:1873–1878CrossRefPubMedGoogle Scholar
  57. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 98:3369–3374PubMedCentralCrossRefPubMedGoogle Scholar
  58. Stenflo J, Fernlund P, Egan W, Roepstorff P (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A 71:2730–2733PubMedCentralCrossRefPubMedGoogle Scholar
  59. Sundaram KS, Lev M (1988) Warfarin administration reduces synthesis of sulfatides and other sphingolipids in mouse brain. J Lipid Res 29:1475–1479PubMedGoogle Scholar
  60. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7:584–590CrossRefPubMedGoogle Scholar
  61. Tabb MM, Sun A, Zhou C, Grün F, Errandi J, Romero K, Pham H, Inoue S, Mallick S, Lin M, Forman BM, Blumberg B (2003) Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 278:43919–43927CrossRefPubMedGoogle Scholar
  62. Takeyama D, Miki Y, Fujishima F, Suzuki T, Akahira J, Hata S, Miyata G, Satomi S, Sasano H (2010) Steroid and xenobiotic receptor in human esophageal squamous cell carcinoma: a potent prognostic factor. Cancer Sci 101:543–549CrossRefPubMedGoogle Scholar
  63. Thijssen HH, Drittij-Reijnders MJ (1996) Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. Br J Nutr 75:121–127CrossRefPubMedGoogle Scholar
  64. Ueda N, Shiraha H, Fujikawa T, Takaoka N, Nakanishi Y, Suzuki M, Matsuo N, Tanaka S, Nishina S, Uemura M, Takaki A, Shiratori Y, Yamamoto K (2008) Exon 2 deletion splice variant of gamma-glutamyl carboxylase causes des-gamma-carboxy prothrombin production in hepatocellular carcinoma cell lines. Mol Oncol 2:241–249CrossRefPubMedGoogle Scholar
  65. Varnum BC, Young C, Elliott G, Garcia A, Bartley TD, Fridell YW, Hunt RW, Trail G, Clogston C, Toso RJ, Yanagihara D, Bennett L, Sylber M, Merewether LA, Tseng A, Escobar E, Liu ET, Yamane HK (1995) Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 373:623–626CrossRefPubMedGoogle Scholar
  66. Vergnaud P, Garnero P, Meunier PJ, Bréart G, Kamihagi K, Delmas PD (1997) Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab 82:719–724PubMedGoogle Scholar
  67. Verma S, Tabb MM, Blumberg B (2009) Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer 9:3PubMedCentralCrossRefPubMedGoogle Scholar
  68. Viegas CS, Simes DC, Laizé V, Williamson MK, Price PA, Cancela ML (2008) Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J Biol Chem 283:36655–36664PubMedCentralCrossRefPubMedGoogle Scholar
  69. Wagener R, Ehlen HW, Ko YP, Kobbe B, Mann HH, Sengle G, Paulsson M (2005) The matrilins – adaptor proteins in the extracellular matrix. FEBS Lett 579:3323–3329CrossRefPubMedGoogle Scholar
  70. Warder SE, Prorok M, Chen Z, Li L, Zhu Y, Pedersen LG, Ni F, Castellino FJ (1998) The roles of individual gamma-carboxyglutamate residues in the solution structure and cation-dependent properties of conantokin-T. J Biol Chem 273:7512–7522CrossRefPubMedGoogle Scholar
  71. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 98:3375–3380PubMedCentralCrossRefPubMedGoogle Scholar
  72. Yaegashi Y, Onoda T, Tanno K, Kuribayashi T, Sakata K, Orimo H (2008) Association of hip fracture incidence and intake of calcium, magnesium, vitamin D, and vitamin K. Eur J Epidemiol 23:219–225CrossRefPubMedGoogle Scholar
  73. Yagami T, Ueda K, Asakura K, Sakaeda T, Nakazato H, Kuroda T, Hata S, Sakaguchi G, Itoh N, Nakano T, Kambayashi Y, Tsuzuki H (2002) Gas6 rescues cortical neurons from amyloid beta protein-induced apoptosis. Neuropharmacology 43:1289–1296CrossRefPubMedGoogle Scholar
  74. Yaguchi M, Miyazawa K, Katagiri T, Nishimaki J, Kizaki M, Tohyama K, Toyama K (1997) Vitamin K2 and its derivatives induce apoptosis in leukemia cells and enhance the effect of all-trans retinoic acid. Leukemia 11:779–787CrossRefPubMedGoogle Scholar
  75. Yoshida H, Shiratori Y, Kudo M, Shiina S, Mizuta T, Kojiro M, Yamamoto K, Koike Y, Saito K, Koyanagi N, Kawabe T, Kawazoe S, Kobashi H, Kasugai H, Osaki Y, Araki Y, Izumi N, Oka H, Tsuji K, Toyota J, Seki T, Osawa T, Masaki N, Ichinose M, Seike M, Ishikawa A, Ueno Y, Tagawa K, Kuromatsu R, Sakisaka S, Ikeda H, Kuroda H, Kokuryu H, Yamashita T, Sakaida I, Katamoto T, Kikuchi K, Nomoto M, Omata M (2011) Effect of vitamin K2 on the recurrence of hepatocellular carcinoma. Hepatology 54:532–540CrossRefPubMedGoogle Scholar
  76. Yue X, Akahira J, Utsunomiya H, Miki Y, Takahashi N, Niikura H, Ito K, Sasano H, Okamura K, Yaegashi N (2010) Steroid and Xenobiotic Receptor (SXR) as a possible prognostic marker in epithelial ovarian cancer. Pathol Int 60:400–406CrossRefPubMedGoogle Scholar
  77. Zhou C, Tabb MM, Nelson EL, Grün F, Verma S, Sadatrafiei A, Lin M, Mallick S, Forman BM, Thummel KE, Blumberg B (2006) Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J Clin Invest 116:2280–2289PubMedCentralCrossRefPubMedGoogle Scholar
  78. Zhou C, Verma S, Blumberg B (2009) The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nucl Recept Signal 7:e001PubMedCentralPubMedGoogle Scholar
  79. Zhu A, Sun H, Raymond RM Jr, Furie BC, Furie B, Bronstein M, Kaufman RJ, Westrick R, Ginsburg D (2007) Fatal hemorrhage in mice lacking gamma-glutamyl carboxylase. Blood 109:5270–5275PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Department of Anti-Aging Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
  3. 3.Division of Gene Regulation and Signal Transduction, Research Center for Genomic MedicineSaitama Medical SchoolSaitamaJapan

Personalised recommendations