α-Klotho in Health and Diseases

  • Yo-ichi NabeshimaEmail author


α-klotho - (α-kl) was first identified as an aging gene and later shown to be a regulator of calcium and phosphate homeostasis. α-kl is predominantly expressed in tissues that are involved in mineral homeostasis, and it encodes a 130-kDa type I glycoprotein. α-Kl was first predicted to localize to the cell surface. However, large amounts of α-Kl proteins have been detected in the intra-cellular space. In addition, the extra-cellular domain is cleaved, and secreted forms have been identified in the blood, CSF and urine. These findings suggest that α-Kl has several functions that depend on its intracellular, membrane, and extra-cellular secreted forms. In fact, the intra-cellular form of α-Kl activates Ca2+ transport from the blood to the CSF in the choroid plexus and Ca2+ re-absorption in the kidney and regulates PTH secretion in parathyroid glands by controlling the trafficking of the Na+-K+-ATPase complex to plasma membrane. On the membrane, α-Kl forms a ternary complex with FGF23 and FGFR1 and negatively regulates 1, 25(OH)2D synthesis and phosphate re-absorption in the kidney. As a down-steam event of hypervitaminosis D and hyperphosphatemia, Calpain-1 is greatly activated and is responsible for many phenotypes. Although a growing number of papers have reported the biological and clinical roles of the secreted form of α-Kl, the functions of the secreted form of α-Kl are poorly understood.

The extracellular domain of α-Kl contains two internal repeats that are homologous to family 1 β-glycosidase. However, critical amino acid residues that are essential for enzyme action are replaced. Nonetheless, α-Kl was found to exhibit a subtle but specific β-glucuronidase activity. This finding suggests that the function of α-Kl may be twofold; it may act as an enzyme or as a glycoside-binding protein. The analyses of the sugar chains of α-Kl binding proteins and revealed that α-Kl functions as a glycoside-binding protein.


Klotho FGF23 Na+,K+-ATPase Family 1 β-glycosidase Mineral homeostasis Agingsyndromes 


  1. Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H, van der Eerden BC, van Leeuwen JP, Bindels RJ, Hoenderop JG (2009) Klotho prevents renal calcium loss. J Am Soc Nephrol 20:2371–2379PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bhattacharyya N, Chong WH, Gafni RI, Collins MT (2012) Fibroblast growth factor 23: state of the field and future directions. Trends Endocrinol Metab 23:610–618PubMedCentralCrossRefPubMedGoogle Scholar
  3. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854PubMedGoogle Scholar
  4. Bringhurst FR, Demay MB, Kronenberg H (2011) Hormones and disorders of mineral metabolism. In: Bringhurst FR, Demay MB, Kronenberg HM (eds) William’s textbook of endocrinology, 12th edn. Elsevier Saunders, Philadelphia, pp 1237–1304CrossRefGoogle Scholar
  5. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O et al (1993) Cloning and characterization of an extracellular Ca2+ sensing receptor from bovine parathyroid. Nature 366:575–580CrossRefPubMedGoogle Scholar
  6. Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262:1051–1054CrossRefPubMedGoogle Scholar
  7. Calleja-Agius J, Muscat-Baron Y, Brincat MP (2007) Skin ageing. Menopause Int 13:60–64PubMedGoogle Scholar
  8. Campbell RL, Davies PL (2012) Structure-function relationships in calpains. Biochem J 447:335–351CrossRefPubMedGoogle Scholar
  9. Cheng CY, Kuro-o M, Razzaque MS (2011) Molecular regulation of phosphate metabolism by fibroblast growth factor-23-klotho system. Adv Chronic Kidney Dis 18:91–97PubMedCentralCrossRefPubMedGoogle Scholar
  10. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859CrossRefPubMedGoogle Scholar
  11. Drüeke TB, Prié D (2007) Klotho spins the thread of life – what does klotho do to the receptors of fibroblast growth factor-23 (FGF23)? Nephrol Dial Transplant 22:1524–1526CrossRefPubMedGoogle Scholar
  12. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801CrossRefPubMedGoogle Scholar
  13. Gopalan V, Pastuszyn A, Galey WR Jr, Glew RH (1992) Exolytic hydrolysis of toxic plant glucosides by guinea pig liver cytosolic beta-glucosidase. J Biol Chem 267:14027–14032PubMedGoogle Scholar
  14. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316PubMedCentralCrossRefPubMedGoogle Scholar
  15. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788PubMedCentralCrossRefPubMedGoogle Scholar
  16. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696PubMedCentralCrossRefPubMedGoogle Scholar
  17. Herscovics A (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473:96–107CrossRefPubMedGoogle Scholar
  18. Hoenderop JGJ, Nilius B, Bindels RJM (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422CrossRefPubMedGoogle Scholar
  19. Imura A, Iwano A, Kita N, Thoyama O, Fujimori T, Nabeshima Y (2004) Secreted klotho protein in sera and CSF: implication for post-translational cleavage in release of klotho protein from cell membrane. FEBS Lett 565:143–147CrossRefPubMedGoogle Scholar
  20. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabehsima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T, Nabehsima Y (2007) Alpha-klotho as a regulator of calcium homeostasis. Science 316:1615–1618CrossRefPubMedGoogle Scholar
  21. Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, Appleby D, Nessel L, Bellovich K, Chen J, Hamm L, Gadegbeku C, Horwitz E, Townsend RR, Anderson CA, Lash JP, Hsu CY, Leonard MB, Wolf M (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79:1370–1378PubMedCentralCrossRefPubMedGoogle Scholar
  22. Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y (2005) Impaired negative feedback suppression of bile acid synthesis in mice lacking betaklotho. J Clin Invest 115:2202–2208PubMedCentralCrossRefPubMedGoogle Scholar
  23. Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–569CrossRefPubMedGoogle Scholar
  24. Kendrick J, Chonchol M (2011) The role of phosphorus in the development and progression of vascular calcification. Am J Kidney Dis 58:826–834PubMedCentralCrossRefPubMedGoogle Scholar
  25. Kim HR, Nam BY, Kim DW, Kang MW, Han JH, Lee MJ, Shin DH, Doh FM, Koo HM, Ko KI, Kim CH, Oh HJ, Yoo TH, Kang SW, Han DS, Han SH (2013) Circulating α-klotho levels in CKD and relationship to progression. Am J Kidney Dis 61:899–909CrossRefPubMedGoogle Scholar
  26. Koh N, Fujimori T, Tamori A, Nishiguchi S, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kuroki T, Nabeshima Y (2001) Severely reduced expression of klotho gene in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015–1020CrossRefPubMedGoogle Scholar
  27. Komaba H, Fukagawa M (2012) The role of FGF23 in CKD – with or without klotho. Nat Rev Nephrol 8:484–490CrossRefPubMedGoogle Scholar
  28. Kovesdy CP, Quarles LD (2013) Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant 28(9):2228–2236PubMedCentralCrossRefPubMedGoogle Scholar
  29. Kuizon BD, Salusky IB (1999) Growth retardation in children with chronic renal failure. J Bone Miner Res 14:1680–1690CrossRefPubMedGoogle Scholar
  30. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Ryozo N, Nabeshima Y (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51CrossRefPubMedGoogle Scholar
  31. Kurosu H, Yamamoto M, Clark AJD, Pastor JV, Nandi A, Grunani P et al (2005) Suppression of aging in mice by the hormone klotho. Science 309:1829–1833PubMedCentralCrossRefPubMedGoogle Scholar
  32. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123PubMedCentralCrossRefPubMedGoogle Scholar
  33. LaMarco KL, Glew RH (1986) Hydrolysis of a naturally occurring beta-glucoside by a broad-specificity beta-glucosidase from liver. Biochem J 237:469–476PubMedCentralCrossRefPubMedGoogle Scholar
  34. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364CrossRefPubMedGoogle Scholar
  35. London GM, Drueke TB (1997) Atherosclerosis and arteriosclerosis in chronic renal failure. Kidney Int 51:1678–1695CrossRefPubMedGoogle Scholar
  36. Lytton J (2007) Na./Ca. exchangers: three mammalian gene families control C2+ transport. Biochem J 406:365–382CrossRefPubMedGoogle Scholar
  37. Manya H, Fujimori T, Nabeshima Y, Endo T (2002) Klotho protein deficiency leads to overactivation of (Mu)-calpain. J Biol Chem 277:35503–35508CrossRefPubMedGoogle Scholar
  38. Mathew S, Tustison KS, Sugatani T, Chaudhary LR, Rifas L, Hruska KA (2008) The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol 19:1092–1105PubMedCentralCrossRefPubMedGoogle Scholar
  39. McCarter JD, Withers SG (1994) Curr Opin Struct Biol 4:885–892CrossRefPubMedGoogle Scholar
  40. Mellgren RL, Huang X (2007) Fetuin a stabilizes μ-calpain and facilitates plasma membrane repair. J Biol Chem 282:35868–35877CrossRefPubMedGoogle Scholar
  41. Milliner DS, Zinsmeister AR, Lieberman E, Landing B (1990) Soft tissue calcification in pediatric patients with end-stage renal disease. Kidney Int 38:931–936CrossRefPubMedGoogle Scholar
  42. Moe SM, Reslerova M, Ketteler M, O’neill K, Duan D, Koczman J, Westenfeld R, Jahnen-Dechent W, Chen NX (2005) Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 67:2295–2304CrossRefPubMedGoogle Scholar
  43. Nabeshima Y (2009) Discovery of α-Klotho unveiled new insights into calcium and phosphate homeostasis. Proc Jpn Acad Ser B 85:125–141CrossRefGoogle Scholar
  44. Nabeshima Y, Washida M, Tamura M, Maeno A, Ohnishi M, Shiroishi T, Imura A, Razzaque MS, Nabeshima Y (2014) Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes. Sci Rep 4:5847PubMedCentralCrossRefPubMedGoogle Scholar
  45. Nakatani T, Sarraj B, Ohnishi M, Densmore MJ, Taguchi T, Goetz R, Mohammadi M, Lanske B, Razzaque MS (2009) In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J 23:433–441PubMedCentralCrossRefPubMedGoogle Scholar
  46. Ohnishi M, Razzaque MS (2010) Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J 24:3562–3571PubMedCentralCrossRefPubMedGoogle Scholar
  47. Ohnishi M, Nakatani T, Lanske B, Razzaque MS (2006) Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1α-hydroxylase. Kidney Int 75:1166–1172CrossRefGoogle Scholar
  48. Parfitt AM, Kleerekoper M (1980) The divalent ion homeostatic system: physiology and metabolism of calcium, phosphorus, magnesium, and bone. In: Maxwell MH, Kleeman CR (eds) Clinical disorders of fluid and electrolyte metabolism, 3rd edn. McGraw-Hill, New York, pp 269–398Google Scholar
  49. Proudfoot D, Shanahan CM (2006) Molecular mechanisms mediating vascular calcification: role of matrix Gla protein. Nephrology 11:455–461CrossRefPubMedGoogle Scholar
  50. Quarles LD (2012) Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res 318:1040–1048PubMedCentralCrossRefPubMedGoogle Scholar
  51. Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in brassicaceae. Plant Mol Biol 42:93–113CrossRefPubMedGoogle Scholar
  52. Razzaque MS (2009) The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5:611–619PubMedCentralCrossRefPubMedGoogle Scholar
  53. Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B (2006) Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D mediated process. FASEB J 20:720–722PubMedCentralPubMedGoogle Scholar
  54. Rostand SG, Drueke TB (1999) Parathyroid hormone, vitamin D, and cardiovascular disease in chronic renal failure. Kidney Int 56:383–392CrossRefPubMedGoogle Scholar
  55. Rye CS, Withers SG (2000) Curr Opin Chem Biol 4:573–580CrossRefPubMedGoogle Scholar
  56. Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in atherosclerotic calcification. Nat Rev Cardiol 7:528–536PubMedCentralCrossRefPubMedGoogle Scholar
  57. Sato A, Hirai T, Imura A, Kita A, Iwano A, Muro S, Nabeshima Y, Suki B, Mishima M (2007) Morphological mechanism of the development of pulmonary emphysema in klotho mice. Proc Natl Acad Sci U S A 104:2361–2365PubMedCentralCrossRefPubMedGoogle Scholar
  58. Seiler S, Wen M, Roth HJ, Fehrenz M, Flügge F, Herath E, Weihrauch A, Fliser D, Heine GH (2013) Plasma klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int 83:121–128CrossRefPubMedGoogle Scholar
  59. Sergeev IN (2005) Calcium signaling in cancer and vitamin D. J Steroid Biochem Mol Biol 97:145–151CrossRefPubMedGoogle Scholar
  60. Sergeev IN (2009) 1,25-Dihydroxyvitamin D3 induces Ca2+-mediated apoptosis in adipocytes via activation of calpain and caspase-12. Biochem Biophys Res Commun 384:18–21CrossRefPubMedGoogle Scholar
  61. Shao JS, Cheng SL, Sadhu J, Towler DA (2010) Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55:579–592PubMedCentralCrossRefPubMedGoogle Scholar
  62. Skou JC (1988) The Na., K.-pump. Methods Enzymol 156:1–25CrossRefPubMedGoogle Scholar
  63. Stubbs JR, Liu S, Tang W, Zhou J, Wang Y, Yao X, Quarles LD (2007) Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J Am Soc Nephrol 18:2116–2124CrossRefPubMedGoogle Scholar
  64. Takeshita K, Fujimori T, Kurotaki Y, Honjo H, Tsujikawa H, Yasui K, Lee J-K, Kamiya K, Kitaichi K, Yamamoto K, Ito M, Kondo T, Iino S, Inden Y, Hirai M, Murohara T, Kodama I, Nabeshima Y (2004) Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation 109:1776–1782CrossRefPubMedGoogle Scholar
  65. Tohyama O, Imura A, Iwano A, Freund JN, Henrissat B, Fujimori T, Nabeshima Y (2004) Klotho is a novel β-glucuronidase capable of hydrolyzing steroid β-glucuronides. J Biol Chem 273:9777–9784CrossRefGoogle Scholar
  66. Tomiyama K, Maeda R, Urakawa I, Yamazaki Y, Tanaka T, Ito S, Nabeshima Y, Tomita T, Odori S, Hosoda K, Nakao K, Imura A, Nabeshima Y (2010) Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc Natl Acad Sci U S A 107:1666–1671PubMedCentralCrossRefPubMedGoogle Scholar
  67. Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y (2003) Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 17:2393–2403CrossRefPubMedGoogle Scholar
  68. Tsuruoka S, Nishiki K, Ioka T, Ando H, Saito Y, Kurabayashi M, Nagai R, Fujimura A (2006) Defect in parathyroid-hormone-induced luminal calcium absorption in connecting tubules of klotho mice. Nephrol Dial Transplant 21:2762–2767CrossRefPubMedGoogle Scholar
  69. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774CrossRefPubMedGoogle Scholar
  70. Urena P, De Vernejoul MC (1999) Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int 55:2141–2156CrossRefPubMedGoogle Scholar
  71. Wallin R, Wajih N, Greenwood GT, Sane DC (2001) Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev 21:274–301CrossRefPubMedGoogle Scholar
  72. Wang KK, Yuen PW (1994) Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci 15:412–419CrossRefPubMedGoogle Scholar
  73. Wittstock U, Halkier BA (2002) Glucosinolate research in the arabidopsis era. Trends Plant Sci 7:263–270CrossRefPubMedGoogle Scholar
  74. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N, Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H, Ichikawa S, Imel EA, Econs MJ, Nabeshima Y (2010) Establishment of sandwich ELISA for soluble alpha-klotho measurement: age-dependent change of soluble alpha-klotho levels in healthy subjects. Biochem Biophys Res Commun 398:513–518PubMedCentralCrossRefPubMedGoogle Scholar
  75. Yoshida T, Fujimori T, Nabeshima Y (2002) Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D3 in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 143:683–689PubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Laboratory of Molecular Life Science Foundation for Biomedical Research and InnovationKobeJapan

Personalised recommendations