Skip to main content

Solidification/Stabilization: A Remedial Option for Metal-Contaminated Soils

  • Chapter
Environmental Remediation Technologies for Metal-Contaminated Soils

Abstract

Decontamination of hazardous discards by immobilization of toxic components is a longstanding approach for managing waste, while it gained much attention in recent years due to the increasing number of statutes and regulations favouring the technology. The solidification/stabilization (S/S) technique is the commonly adopted immobilization option to treat the contaminated soils, which employ additives to convert the hazardous waste to non-hazardous mass in accordance with the legitimate landfill provisions. The discussion is further extended to the stabilization of toxic elements in contaminated soils using chemical amendments. The current paper presents a summarized overview on the application of S/S technique in managing metal-contaminated soil, including information about the frequently used additives for the purpose, and the steps involved in the implementation of S/S remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • AEPI (1998) Solidification technologies for restoration of sites contaminated with hazardous wastes. Army Environmental Policy Institute, Atlanta

    Google Scholar 

  • Ahmad M, Hashimoto Y, Moon DH, Lee SS, Ok YS (2012) Immobilization of lead in a Korean military shooting range soil using eggshell waste: an integrated mechanistic approach. J Hazard Mater 209–210:392–401

    Article  CAS  Google Scholar 

  • Ajmal M, Hussain Khan A, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper(II) from industrial wastes. Water Res 32:3085–3091

    Article  CAS  Google Scholar 

  • Allan ML, Kukacka LE (1995) Blast furnace slag-modified grouts for in situ stabilization of chromium-contaminated soil. Waste Manag 15:193–202

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie, London

    Book  Google Scholar 

  • Al-Tabbaa A, Evans CW (1999) Laboratory-scale soil mixing of a contaminated site. Ground Improv 3:119–134

    Google Scholar 

  • Al-Tabbaa A, Perera ASR (2005a) UK stabilisation/solidification treatment and remediation, Part II: Binders & technologies – research. In: Tabbaa AA, Stegemann JA (eds) Stabilisation/solidification treatment and remediation: advances in S/S for waste and contaminated land. Balkema, London, pp 387–398

    Chapter  Google Scholar 

  • Al-Tabbaa A, Perera ASR (2005b) UK stabilisation/solidification treatment and remediation, Part III: binders & technologies – applications. In: Tabbaa AA, Stegemann JA (eds) Stabilisation/solidification treatment and remediation: advances in S/S for waste and contaminated land. Balkema, London, pp 399–414

    Chapter  Google Scholar 

  • Al-Tabbaa A, Perera ASR (2005c) UK stabilisation/solidification treatment and remediation, Part I: binders & technologies – basic principles. In: Tabbaa AA, Stegemann JA (eds) Stabilisation/solidification treatment and remediation: advances in S/S for waste and contaminated land. Balkema, London, pp 365–386

    Chapter  Google Scholar 

  • Al-Tabbaa A, Perera ASR (2006) UK stabilization/solidification treatment and remediation – Part I: binders, technologies, testing and research. Land Contam Reclam 14:703

    Google Scholar 

  • Andini S, Cioffi R, Montagnaro F, Pisciotta F, Santoro L (2006) Simultaneous adsorption of chlorophenol and heavy metal ions on organophilic bentonite. Appl Clay Sci 31:126–133

    Article  CAS  Google Scholar 

  • ASTM (2001) Standard test method for determining the resistance of solid wastes to freezing and thawing; D4842-90(2001). ASTM International, West Conshohocken. doi:10.1520/D4842-90R01

    Google Scholar 

  • ASTM (2009) Standard test method for wetting and drying test of solid wastes; D4843-88(2009). ASTM International, West Conshohocken. doi:10.1520/D4843-88R09

    Google Scholar 

  • Barth EF (1990) An overview of the history, present status, and future direction of solidification/stabilization technologies for hazardous waste treatment. J Hazard Mater 24:103–109

    Article  CAS  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual 34:49–63

    CAS  Google Scholar 

  • Begum ZA, Rahman IMM, Tate Y, Sawai H, Maki T, Hasegawa H (2012) Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants. Chemosphere 87:1161–1170

    Article  CAS  Google Scholar 

  • Begum ZA, Rahman IMM, Sawai H, Mizutani S, Maki T, Hasegawa H (2013) Effect of extraction variables on the biodegradable chelant-assisted removal of toxic metals from artificially contaminated European reference soils. Water Air Soil Pollut 224:1381

    Article  CAS  Google Scholar 

  • Bleeker PM, Assunção AGL, Teiga PM, de Koe T, Verkleij JAC (2002) Revegetation of the acidic, As contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses. Sci Total Environ 300:1–13

    Article  CAS  Google Scholar 

  • Bone BD, Barnard LH, Boardman DI, Carey PJ, Hills CD, Jones HM, MacLeod CL, Tyrer M (2004) Review of scientific literature on the use of stabilisation/solidification for the treatment of contaminated soil, solid waste and sludges (SC980003/SR2). The Environment Agency, Bristol

    Google Scholar 

  • Brown S, Chaney R, Hallfrisch J, Ryan JA, Berti WR (2004) In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. J Environ Qual 33:522–531

    Article  CAS  Google Scholar 

  • Brown S, Christensen B, Lombi E, McLaughlin M, McGrath S, Colpaert J, Vangronsveld J (2005) An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environ Pollut 138:34–45

    Article  CAS  Google Scholar 

  • Cao X, Ma LQ (2004) Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ Pollut 132:435–442

    Article  CAS  Google Scholar 

  • Chen QY, Tyrer M, Hills CD, Yang XM, Carey P (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag 29:390–403

    Article  CAS  Google Scholar 

  • Chlopecka A, Bacon JR, Wilson MJ, Kay J (1996) Forms of cadmium, lead, and zinc in contaminated soils from Southwest Poland. J Environ Qual 25:69–79

    Article  CAS  Google Scholar 

  • Conner JR (1990) Chemical fixation and solidification of hazardous wastes. Van Nostrand Reinhold, New York

    Google Scholar 

  • Conner JR (1997) Guide to improving the effectiveness of cement-based stabilization/solidification. Portland Cement Association, Skokie

    Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils. J Environ Qual 34:1707–1745

    Article  CAS  Google Scholar 

  • Dhir RK (1986) Pulverised fuel ash. In: Swamy RN (ed) Cement replacement materials. Surrey University Press, Bishopbriggs, pp 197–255

    Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater (TE-97-01). Ground-Water Remediation Technologies Analysis Center (GWRTAC), Pittsburgh

    Google Scholar 

  • Evans D, Jefferis SA, Thomas AO, Cui S (2001) Remedial processes for contaminated land – Principles and practice, CIRIA Report C549. Construction Industry Research Information Association (CIRIA), London

    Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Garrabrants AC, Kosson DS (2005) Leaching processes and evaluation tests for inorganic constituent release from cement-based matrices. In: Spence RD, Shi C (eds) Stabilization and solidification of hazardous, radioactive, and mixed wastes. CRC Press, Boca Raton, pp 229–279

    Google Scholar 

  • Geebelen W, Adriano DC, van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249:217–228

    Article  CAS  Google Scholar 

  • Glasser FP (1997) Fundamental aspects of cement solidification and stabilisation. J Hazard Mater 52:151–170

    Article  CAS  Google Scholar 

  • Gorman JM, Sencindiver JC, Horvath DJ, Singh RN, Keefer RF (2000) Erodibility of fly ash used as a topsoil substitute in mineland reclamation. J Environ Qual 29:805–811

    Article  CAS  Google Scholar 

  • Guha H, Saiers JE, Brooks S, Jardine P, Jayachandran K (2001) Chromium transport, oxidation, and adsorption in manganese-coated sand. J Contam Hydrol 49:311–334

    Article  CAS  Google Scholar 

  • Harris MR, Herbert SM, Smith MA (1995) Remedial treatment for contaminated land, vol VII, Ex-situ remedial methods for soils, sludges and sediments (SP 107). Construction Industry Research and Information Association (CIRIA), London

    Google Scholar 

  • Hettiarachchi GM, Pierzynski GM, Ransom MD (2000) In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol 34:4614–4619

    Article  CAS  Google Scholar 

  • ITRC (2011) Development of performance specifications for solidification/stabilization. Interstate Technology & Regulatory Council, Washington, DC

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1991) Trace elements in soils and plants, vol V, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kershaw DS, Pamukcu S (1997) Ground rubber: reactive permeable barrier sorption media. In: Conference on in situ remediation of the geoenvironment (Geotechnical special publication no. 71), American Society of Civil Engineers, pp 26–40

    Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692

    Article  CAS  Google Scholar 

  • Kim JG, Dixon JB (2002) Oxidation and fate of chromium in soils. Soil Sci Plant Nutr 48:483–490

    Article  CAS  Google Scholar 

  • Komárek M, VanÄ›k A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review. Environ Pollut 172:9–22

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  • LaGrega MD, Buckingham PL, Evans JC (2001) Hazardous waste management. McGraw-Hill, Boston

    Google Scholar 

  • Lee S-H, Lee J-S, Jeong Choi Y, Kim J-G (2009) In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77:1069–1075

    Article  CAS  Google Scholar 

  • Lee S-H, Kim EY, Park H, Yun J, Kim J-G (2011a) In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161:1–7

    Article  CAS  Google Scholar 

  • Lee S-H, Park H, Koo N, Hyun S, Hwang A (2011b) Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods. J Hazard Mater 188:44–51

    Article  CAS  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357:38–53

    Article  CAS  Google Scholar 

  • Little D, Herbert B, Kunagalli S (2005) Ettringite formation in lime-treated soils: establishing thermodynamic foundations for engineering practice. Transp Res Record 1936:51–59

    Article  CAS  Google Scholar 

  • Lombi E, Gerzabek MH (1998) Determination of mobile heavy metal fraction in soil: results of a pot experiment with sewage sludge. Commun Soil Sci Plant Anal 29:2545–2556

    Article  CAS  Google Scholar 

  • Lombi E, Hamon RE, McGrath SP, McLaughlin MJ (2003) Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environ Sci Technol 37:979–984

    Article  CAS  Google Scholar 

  • Matthes W, Madsen FT, Kahr G (1999) Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays Clay Miner 47:617–629

    Article  CAS  Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144:51–61

    Article  CAS  Google Scholar 

  • Mench M, Schwitzguébel J-P, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Poll Res 16:876–900

    Article  CAS  Google Scholar 

  • Neville AM, Brooks JJ (2010) Concrete technology. Prentice Hall, Harlow

    Google Scholar 

  • Osborne-Lee IW, Conley TB, Huktt GA, Morris MI (1999) Demonstration results on the effects of mercury speciation on the stabilization of wastes (ORNL/TM-1999/120). United States Department of Energy, Oak Ridge

    Google Scholar 

  • Palaia T (2007) Resurgence of in situ soil mixing for treating NAPL source areas. Paper presented at the Air force ESOH training symposium, Pittsburgh, March 18–23

    Google Scholar 

  • Pantsar-Kallio M, Reinikainen S-P, Oksanen M (2001) Interactions of soil components and their effects on speciation of chromium in soils. Anal Chim Acta 439:9–17

    Article  CAS  Google Scholar 

  • Paria S, Yuet PK (2006) Solidification–stabilization of organic and inorganic contaminants using portland cement: a literature review. Environ Rev 14:217–255

    Article  CAS  Google Scholar 

  • Perera ASR, Al-Tabbaa A, Reid MJ, Stegemann JA, Shi C (2004) Testing and performance criteria for stabilised/solidified waste forms. In: Spence RD, Shi C (eds) Stabilization and solidification of hazardous, radioactive and mixed wastes. CRC Press, Boca Raton, pp 281–317

    Google Scholar 

  • Perera ASR, Al-Tabbaa A, Reid JM, Johnson D (2005a) UK stabilisation/solidification treatment and remediation, Part V: long-term performance and environmental impact. In: Tabbaa AA, Stegemann JA (eds) Stabilisation/solidification treatment and remediation: advances in S/S for waste and contaminated land. Balkema, London, pp 437–458

    Chapter  Google Scholar 

  • Perera ASR, Al-Tabbaa A, Johnson D (2005b) UK stabilisation/solidification treatment and remediation, Part VI: quality assurance and quality control. In: Tabbaa AA, Stegemann JA (eds) Stabilisation/solidification treatment and remediation: advances in S/S for waste and contaminated land. Balkema, London, pp 459–468

    Chapter  Google Scholar 

  • Pierzynski GM, Sims JT, Vance GF (2005) Soils and environmental quality. Taylor & Francis, Boca Raton

    Google Scholar 

  • Rahman IMM, Nazimuddin M, Hasan MT, Hossain MM (2008) Assimilation of arsenic into edible plants grown in soil irrigated with contaminated groundwater. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America, vol 1, Arsenic in the environment. CRC Press/Balkema, Leiden, pp 351–358

    Google Scholar 

  • Rahman IMM, Hossain MM, Begum ZA, Rahman MA, Hasegawa H (2011) Eco-environmental consequences associated with chelant-assisted phytoremediation of metal-contaminated soil. In: Golubev IA (ed) Handbook of phytoremediation. Nova, Hauppauge, pp 709–722

    Google Scholar 

  • Rahman IMM, Begum ZA, Salehi-Lisar SY, Motafakkerazad R, Awual MR, Hasegawa H (2014) Distribution and abundance of arsenic in the soils and plants. In: Olson MJ (ed) Arsenic: detection, management strategies and health effects. Nova Science Publishers, Hauppauge, pp 117–129

    Google Scholar 

  • Raicevic S, Kaludjerovic-Radoicic T, Zouboulis AI (2005) In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. J Hazard Mater 117:41–53

    Article  CAS  Google Scholar 

  • Roskam GD, Comans RNJ (2009) Availability and leaching of polycyclic aromatic hydrocarbons: controlling processes and comparison of testing methods. Waste Manag 29:136–142

    Article  CAS  Google Scholar 

  • Samsøe-Petersen L, Larsen EH, Larsen PB, Bruun P (2002) Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils. Environ Sci Technol 36:3057–3063

    Article  CAS  Google Scholar 

  • Sánchez-Monedero MA, Mondini C, de Nobili M, Leita L, Roig A (2004) Land application of biosolids. Soil response to different stabilization degree of the treated organic matter. Waste Manag 24:325–332

    Article  CAS  Google Scholar 

  • Seaman JC, Arey JS, Bertsch PM (2001) Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. J Environ Qual 30:460–469

    Article  CAS  Google Scholar 

  • Sherwood PT (1993) Soil stabilization with cement and lime. HMSO, London

    Google Scholar 

  • Sims JL, Sims RC, Matthews JE (1989) Bioremediaiton of contaminated surface soils (EPA 600/9-89/073). U.S. Environmental Protection Agency, Ada

    Google Scholar 

  • Smith LA, Means JL, Chen A, Alleman B, Chapman CC, Tixier JS Jr, Brauning SE, Gavaskar AR, Royer MD (1995) Remedial options for metals-contaminated sites. CRC Press, Boca Raton

    Google Scholar 

  • Spooner PA, Hunt GE, Hodge VE, Wagner PM (1984) Compatibility of grouts with hazardous wastes (EPA-600/2-84-015). United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Sposito G, Page AL (1984) Cycling of metal ions in the soil environment. In: Sigel H, Sigel A (eds) Metal Ions in biological systems, vol 18, Circulation of metals in the environment. Marcel Dekker, New York, pp 287–332

    Google Scholar 

  • Stegemann JA, Cote PL (1990) Summary of an investigation of test methods for solidified waste evaluation. Waste Manag 10:41–52

    Article  CAS  Google Scholar 

  • Stegemann JA, Butcher EJ, Irabien A, Johnston P, de Miguel R, Ouki SK, Polettini A, Sassaroli G (2001) Neural network analysis for prediction of interactions in cement/waste systems. Commission of the European Community, Brussels

    Google Scholar 

  • Su DC, Wong JWC (2004) Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environ Int 29:895–900

    Article  CAS  Google Scholar 

  • Sukandar PT, Tanaka M, Aoyama I (2009) Chemical stabilization of medical waste fly ash using chelating agent and phosphates: heavy metals and ecotoxicity evaluation. Waste Manag 29:2065–2070

    Article  CAS  Google Scholar 

  • Taylor HFW (1992) Cement chemistry. Academic Press, London

    Google Scholar 

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    Article  CAS  Google Scholar 

  • Trussell S, Spence RD (1994) A review of solidification/stabilization interferences. Waste Manag 14:507–519

    Article  CAS  Google Scholar 

  • US EPA (1982) Guide to the disposal of chemically stabilized and solidified waste (SW-872). United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  • US EPA (1986a) Prohibition on the placement of bulk liquid hazardous waste in landfills-statutory interpretive guidance (OSWER policy directive no. 9487.00-2A; EPA 530-SW-86-016). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (1986b) Handbook for stabilization/solidification of hazardous waste (EPA 540/2-861/001). United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  • US EPA (1989) Stabilization/solidification of CERCLA and RCRA waste (EPA 625/6-89/022). United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  • US EPA (1993) Clean water act (Sec. 503, Vol. 58, No. 32). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (1997) Innovative site remediation design and application, vol 4, Stabilization/solidification (EPA 542-B-97-007). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (1999) Solidification/stabilization resource guide (EPA 542-B-99-002). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (2000) Solidification/stabilization use at superfund sites (EPA 542-R-00-010). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (2004) Cleaning up the nation’s waste sites: markets and technology trends, 4th edn, EPA 542-R-04-015. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (2006) In situ treatment technologies for contaminated soil (EPA 542/F-06/013). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (2007) Toxicity characteristic leaching procedure (Method 1311). Test methods for evaluating solid waste, physical/chemical methods (SW-846). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US EPA (2012) The clean water act (Priority pollutants: Appendix A to 40 CFR Part 423). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vangronsveld J, Van Assche F, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    Article  CAS  Google Scholar 

  • Vodyanitskii YN (2013) Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Sci 46:793–801

    Article  CAS  Google Scholar 

  • Wiles CC (1987) A review of solidification/stabilization technology. J Hazard Mater 14:5–21

    Article  CAS  Google Scholar 

  • Wiles CC, Barth E, de Percin P (1988) Status of solidification/stabilization in the United States and factors affecting its use. In: Wolf K, Van Den Brink WJ, Colon FJ (eds) Contaminated soil ’88. Springer, Dordrecht, pp 947–956

    Chapter  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Zhao Q, Kaluarachchi JJ (2002) Risk assessment at hazardous waste-contaminated sites with variability of population characteristics. Environ Int 28:41–53

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research has partially been supported by the Grants-in-Aid for Scientific Research (15H05118 and 25 · 5863) from the Japan Society for the Promotion of Science. One of the authors, Ismail M.M. Rahman, acknowledges the financial grant from the ‘The Public Foundation of Chubu Science and Technology Center, Japan’ to support his research in the Kanazawa University, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ismail M. M. Rahman or Zinnat A. Begum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Rahman, I.M.M., Begum, Z.A., Sawai, H. (2016). Solidification/Stabilization: A Remedial Option for Metal-Contaminated Soils. In: Hasegawa, H., Rahman, I., Rahman, M. (eds) Environmental Remediation Technologies for Metal-Contaminated Soils. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55759-3_6

Download citation

Publish with us

Policies and ethics