Advertisement

Photonic Quantum Metrologies Using Photons: Phase Super-sensitivity and Entanglement-Enhanced Imaging

Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

Quantum information science has been attracting significant attention recently. It harnesses the intrinsic nature of quantum mechanics such as quantum superposition, the uncertainty principle, and quantum entanglement to realize novel functions. Recently, quantum metrology has been emerging as an application of quantum information science. Among the many physical quanta, photons are an indispensable tool for metrology, as light-based measurements are applicable to fields ranging from astronomy to life science. In quantum metrology, quantum entanglement between photons is the phenomenon utilized.In this chapter, we will try to give a brief overview of this emerging field mainly focusing on two topics: Optical phase measurements beyond the standard quantum limit (SQL) and quantum optical coherence tomography (QOCT). The sensitivity of an optical phase measurement for a given photon number N is usually limited by \(\sqrt{N}\), which is called the SQL or shot noise limit. However, the SQL can be overcome when non-classical light is used. We explain the basic concepts and the recent experimental results that exceed the SQL, and an application of this technology for microscopy. QOCT harnesses the quantum entanglement of photons in frequency to cancel out the dispersion effect, which degrades the resolution of conventional OCT. The mechanism of the dispersion cancellation and the latest experimental results will be given.

Keywords

Entanglement microscope Standard quantum limit Phase measurement Quantum optical coherence tomography (QOCT) NOON state Super sensitivity 

Notes

Acknowledgements

I would like to thank my collaborators, especially Ryo Okamoto, Tomohisa Nagata, Masayuki Okano, Takafumi Ono, Keiji Sasaki, Jeremy O’Brien, Holger Hofmann, Norihiko Nishizawa, Sunao Kurimura, and my students for their contribution to the works explained here. The works reported in this chapter were supported in part by the FIRST Program by the Japan Society for the Promotion of Science (JSPS), Core Research for Evolutionary Science and Technology (CREST) of the Japan Science and Technology Corporation (JST), the Quantum Cybernetics Project of JSPS, Grants-in-Aid from JSPS, the Project for Developing Innovation Systems run by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Global Center of Excellence program run by MEXT, and the Research Foundation for Opto-Science and Technology.

References

  1. 1.
    T. Nagata, R. Okamoto, J.L. O’Brien, K. Sasaki, S. Takeuchi, Science 316, 726 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    T. Ono, R. Okamoto, S. Takeuchi, Nat. Commun. 4, 2426 (2013)ADSGoogle Scholar
  3. 3.
    M. Okano, R. Okamoto, A. Tanaka, S. Ishida, N. Nishizawa, S. Takeuchi, Phys. Rev. A 88, 043845 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    L. Mandel, E. Wolf, Chapter 10, in Optical Coherenece and Quantum Optics (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  5. 5.
    H. Lee, P. Kok, J.P. Dowling, J. Mod. Opt. 49, 2325 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    J. Jacobson, G. Björk, I. Chuang, Y. Yamamoto, Phys. Rev. Lett. 74, 4835 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    M.W. Mitchell, J.S. Lundeen, A.M. Steinberg, Nature 429, 161 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    K.J. Resch, K.L. Pregnell, R. Prevedel, A. Gilchrist, G.J. Pryde, J.L. O’Brien, A.G. White, Phys. Rev. Lett. 98, 223601 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    R. Okamoto, H.F. Hofmann, T. Nagata, J.L. O’Brien, K. Sasaki, S. Takeuchi, New J. Phys. 10, 073033 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    G. Sazaki, S. Zepeda, S. Nakatsubo, E. Yokoyama, Y. Furukawa, Proc. Natl. Acad. Sci. USA 107, 19702 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    D. Haung, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Science 254, 1178 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    A.F. Abouraddy, M.B. Nasr, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Phys. Rev. A 65, 053817 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    M.B. Nasr, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Phys. Rev. Lett. 91, 083601 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S.E. Harris, Phys. Rev. Lett. 98, 063602 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A. Tanaka, R. Okamoto, H.H. Lim, S. Subashchandran, M. Okano, L. Zhang, L. Kang, J. Chen, P.H. Wu, T. Hirohata, S. Kurimura, S. Takeuchi, Opt. Express 20, 25228 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    S. Takeuchi, Jpn. J. Appl. Phys. 53, 030101 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A. Crespi et al., Appl. Phys. Lett. 100, 233704 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    F. Wolfgramm, C. Vitelli, F.A. Beduini, N. Godbout, M.W. Mitchell, Nat. Photon. 7, 28 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M.A. Taylor et al., Nat. Photon. 7, 229 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Electronic Science and EngineeringKyoto UniversityKyotoJapan

Personalised recommendations