Cold Atom Magnetometers

Abstract

Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10−11 T/\(\sqrt{\text{Hz}}\) sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

Keywords

Magnetometry Spinor Bose-Einstein condensate Ramsey interferometry Spin echo 

References

  1. 1.
    I. Almog et al., Direct measurement of the system-environment coupling as a tool for understanding decoherence and dynamical decoupling. J. Phys. B Atom. Mol. Opt. Phys. 44, 154006 (2011). doi:10.1088/0953-4075/44/15/154006ADSCrossRefGoogle Scholar
  2. 2.
    R.P. Anderson, C. Ticknor, A.I. Sidorov, B.V. Hall, Spatially inhomogeneous phase evolution of a two-component Bose-Einstein condensate. Phys. Rev. A 80, 023603 (2009). doi:http://dx.doi.org/10.1103/PhysRevA.80.023603
  3. 3.
    G. Balasubramanian et al., Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009). doi:10.1038/nmat2420ADSCrossRefGoogle Scholar
  4. 4.
    D. Budker, D.F.J. Kimball (eds.), Optical Magnetometry (Cambridge University Press, Cambridge/New York, 2013)Google Scholar
  5. 5.
    Y. Eto, H. Ikeda et al., Spin-echo-based magnetometry with spinor Bose-Einstein condensates. Phys. Rev. A 88, 031602(R) (2013). doi:10.1103/PhysRevA.88.031602Google Scholar
  6. 6.
    Y. Eto, S. Sekine et al., Control and detection of the Larmor precession of F=287Rb Bose-Einstein condensates by Ramsey interferometry and Spin-Echo. Appl. Phys. Express 6, 05280 (2013). doi:10.7567/APEX.6.052801CrossRefGoogle Scholar
  7. 7.
    J.N.S. Evans, Biomolecular NMR Spectroscopy (Oxford University Press, Oxford/New York, 1995)Google Scholar
  8. 8.
    E.L. Hahn, Spin echoes. Phys. Rev. 80, 581 (1950). doi:10.1103/PhysRev.80.580ADSCrossRefGoogle Scholar
  9. 9.
    P. Hariharan, D. Sen, J. Sci. Instr. 36, 70 (1959). doi:10.1088/0950-7671/36/2/304ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Higbie et al., Direct nondestructive imaging of magnetization in a spin-1 Bose-Einstein gas. Phys. Rev. Lett. 95, 050401 (2005). doi:http://dx.doi.org/10.1103/PhysRevLett.95.050401
  11. 11.
    L.R. Hunter, Tests of time-reversal invariance in atoms, molecules, and the neutron. Science 252, 73–79 (1991). doi:10.1126/science.252.5002.73ADSCrossRefGoogle Scholar
  12. 12.
    J. Keeler, Understanding NMR Spectroscopy (Wiley, Chichester, 2005)Google Scholar
  13. 13.
    W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Making, Probing and Understanding Bose-Einstein Condensates (1999). arXiv:cond-mat/9904034Google Scholar
  14. 14.
    M. Kitagawa, M. Ueda, Squeezed spin states. Phys. Rev. A 47, 5138 (1993). doi:10.1103/PhysRevA.47.5138ADSCrossRefGoogle Scholar
  15. 15.
    K. Kobayashi, Y. Uchikawa, Development of a high spatial resolution SQUID magnetometer for biomagnetic measurement. IEEE Trans. Magn. 39, 3378–3380 (2003). doi:10.1109/TMAG.2003.816156ADSCrossRefGoogle Scholar
  16. 16.
    I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003). doi:10.1038/nature01484ADSCrossRefGoogle Scholar
  17. 17.
    M. Koschorreck, N. Napolitano, B. Dubost, M.W. Mitchell, Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010). doi:10.1103/PhysRevLett.104.093602ADSCrossRefGoogle Scholar
  18. 18.
    S. Kotler et al., Single-ion quantum lock-in amplifier. Nature 473, 61 (2011). doi:10.1038/nature10010ADSCrossRefGoogle Scholar
  19. 19.
    S. Kotler, N. Akerman, Y. Glickman, R. Ozeri, Nonlinear single-spin spectrum analyzer. Phys. Rev. Lett. 110, 110503 (2013). doi:http://dx.doi.org/10.1103/PhysRevLett.110.110503
  20. 20.
    J. Kronjäger et al., Spontaneous pattern formation in an antiferromagnetic quantum gas. Phys. Rev. Lett. 105, 090402 (2010). doi:http://dx.doi.org/10.1103/PhysRevLett.105.090402
  21. 21.
    T. Kuwamoto, K. Araki, T. Eno, T. Hirano, Magnetic field dependence of the dynamics of87Rb spin-2 Bose-Einstein condensates. Phys. Rev. A 69, 063604 (2004). doi:http://dx.doi.org/10.1103/PhysRevA.69.063604
  22. 22.
    J.R. Maze et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). doi:10.1038/nature07279ADSCrossRefGoogle Scholar
  23. 23.
    N.F. Ramsey, Molecular Beams (Oxford University Press, Oxford/New York, 1956)Google Scholar
  24. 24.
    M. Sadgrove et al., Ramsey interferometry using the Zeeman sublevels in a spin-2 Bose gas. J. Phys. Soc. Jpn. 82, 094002 (2013). doi:10.7566/JPSJ.82.094002ADSCrossRefGoogle Scholar
  25. 25.
    J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1993)Google Scholar
  26. 26.
    M. Shimogawara, H. Tanaka, K. Kazumi, Y. Haruta, MEGvision magnetoencephalograph system and its applications. Yokogawa Tech. Rep. 38, 23–27 (2004). http://www.yokogawa.com/rd/pdf/TR/rd-tr-r00038-006.pdf
  27. 27.
    D.M. Stamper-Kurn, M. Ueda, Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191 (2013). doi:http://dx.doi.org/10.1103/RevModPhys.85.1191
  28. 28.
    J.M. Taylor et al., High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810 (2008). doi:10.1038/nphys1075CrossRefGoogle Scholar
  29. 29.
    S. Tojo et al., Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance. Phys. Rev. A 82, 033609 (2010). doi:http://dx.doi.org/10.1103/PhysRevA.82.033609
  30. 30.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1998)Google Scholar
  31. 31.
    M. Vengalattore et al., High-Resolution magnetometry with a spinor Bose-Einstein condensate. Phys. Rev. Lett. 98, 200801 (2007). doi:http://dx.doi.org/10.1103/PhysRevLett.98.200801
  32. 32.
    S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth et al., Sensing electric and magnetic fields with Bose-Einstein condensates. Appl. Phys. Lett. 88, 264103 (2006). doi:10.1063/1.2216932ADSCrossRefGoogle Scholar
  33. 33.
    S. Wildermuth, S. Hofferberth, I. Leanovsky, E. Haller et al., Bose-Einstein condensates: microscopic magnetic-field imaging. Nature 435, 440 (2005). doi:10.1038/435440aADSCrossRefGoogle Scholar
  34. 34.
    F. Wolfgramm et al., Squeezed-Light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010). doi:10.1103/PhysRevLett.105.053601ADSCrossRefGoogle Scholar
  35. 35.
    M. Yasunaga, M. Tsubota, Spin Echo in Spinor dipolar Bose-Einstein condensates. Phys. Rev. Lett. 101, 220401 (2008). doi:http://dx.doi.org/10.1103/PhysRevLett.101.22040
  36. 36.
    M. Yasunaga, M. Tsubota, Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates. J. Phys. Conf. Ser. 150, 032127 (2009). doi:10.1088/1742-6596/150/3/032127ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Gakushuin UniversityTokyoJapan
  2. 2.Research Institute of Electrical CommunicationTohoku UniversitySendai-shiJapan

Personalised recommendations