Advertisement

Optical Lattice Clocks for Precision Time and Frequency Metrology

Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

An optical lattice operated at the “magic wavelength” provides a platform for precision metrology of time and frequency, where an atomic ensemble serves as a reference with precisely-controlled quantum states. Such an optical lattice clock allows extremely high accuracy and stability at the level of 10−18. This review outlines the principles and experimental realization of optical lattice clocks, in particular, the demonstration of quantum projection noise limited stability and the reduction of the uncertainty induced by the blackbody radiation. As a future prospect, we discuss the application of optical lattice clocks as a tool for relativistic geodesy.

Keywords

Quantum metrology Atomic clocks Optical lattice clocks Magic wavelength Relativistic geodesy 

Notes

Acknowledgements

This research was supported by the FIRST Program of the Japan Society for the Promotion of Science and by the Photon Frontier Network Program of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. 1.
    T. Akatsuka, H. Ono, K. Hayashida, K. Araki, M. Takamoto, T. Takano, H. Katori, 30-km-long optical fiber link at 1397 nm for frequency comparison between distant strontium optical lattice clocks. Jpn. J. Appl. Phys. 53(3), 032801 (2014). doi: 10.7567/jjap.53.032801 ADSCrossRefGoogle Scholar
  2. 2.
    T. Akatsuka, M. Takamoto, H. Katori, Optical lattice clocks with non-interacting bosons and fermions. Nat. Phys. 4(12), 954–959 (2008). doi: 10.1038/nphys1108 CrossRefGoogle Scholar
  3. 3.
    X. Baillard, M. Fouché, R. Le Targat, P.G. Westergaard, A. Lecallier, F. Chapelet, M. Abgrall, G.D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, H. Schnatz, An optical lattice clock with spin-polarized 87Sr atoms. Eur. Phys. J. D. 48, 11–17 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    BIPM, in Report of the 101th meeting of the Comité International des Poids et Mesures (CIPM) (Bureau International des Poids et Mesures (BIPM), Sevres, Paris Cedex, 2013)Google Scholar
  5. 5.
    K. Beloy, J.A. Sherman, N.D. Lemke, N. Hinkley, C.W. Oates, A.D. Ludlow, Determination of the 5d6s 3D1 state lifetime and blackbody-radiation clock shift in Yb. Phys. Rev. A 86(5), 051404 (2012). doi: 10.1103/PhysRevA.86.051404 ADSCrossRefGoogle Scholar
  6. 6.
    S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Grünert, C. Vian, F.P.D. Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, C. Salomon, Cold atom clocks and applications. J. Phys. B Atomic Mol. Phys. 38(9), S449–S468 (2005). doi: 10.1088/0953-4075/38/9/002 ADSCrossRefGoogle Scholar
  7. 7.
    G.K. Campbell, A.D. Ludlow, S. Blatt, J.W. Thomsen, M.J. Martin, M.H.G. de Miranda, T. Zelevinsky, M.M. Boyd, J. Ye, S.A. Diddams, T.P. Heavner, T.E. Parker, S.R. Jefferts, The absolute frequency of the 87Sr optical clock transition. Metrologia 45, 539–548 (2008). doi: 10.1088/0026-1394/45/5/008 ADSCrossRefGoogle Scholar
  8. 8.
    P. Chang Yong, Y. Dai-Hyuk, L. Won-Kyu, P. Sang Eon, K. Eok Bong, L. Sun Kyung, C. Jun Woo, Y. Tai Hyun, M. Jongchul, P. Sung Jong, K. Taeg Yong, L. Sang-Bum, Absolute frequency measurement of 1S0 (F = 1/2) – 3P0 (F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS. Metrologia 50(2), 119 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland, T. Rosenband, Frequency comparison of two high-accuracy Al+ optical clocks. Phys. Rev. Lett. 104(7), 070802 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    C.W. Chou, D.B. Hume, T. Rosenband, D.J. Wineland, Optical clocks and relativity. Science 329(5999), 1630–1633 (2010). doi: 10.1126/science.1192720 ADSCrossRefGoogle Scholar
  11. 11.
    S. Chu, Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys. 70(3), 685–706 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    C.N. Cohen-Tannoudji, Nobel lecture: Manipulating atoms with photons. Rev. Mod. Phys. 70(3), 707–719 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    H. Dehmelt, in Mono-Ion Oscillator as Potential Ultimate Laser Frequency Standard. Thirty Fifth Annual Frequency Control Symposium, 27–29 May 1981 (1981), pp. 596–601. doi: 10.1109/FREQ.1981.200532
  14. 14.
    R. Dicke, The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89(2), 472–473 (1953). doi: 10.1103/PhysRev.89.472 ADSCrossRefGoogle Scholar
  15. 15.
    S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, T.W. Hänsch, Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102–5105 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    S. Falke, H. Schnatz, J.S.R.V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, C. Lisdat, The 87Sr optical frequency standard at PTB. Metrologia 48(5), 399 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J. Flowers, The route to atomic and quantum standards. Science 306(5700), 1324–1330 (2004). doi: 10.1126/science.1102156 ADSCrossRefGoogle Scholar
  18. 18.
    T.W. Hänsch, Nobel lecture: Passion for precision. Rev. Mod. Phys. 78(4), 1297–1309 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    H. Hachisu, K. Miyagishi, S. Porsev, A. Derevianko, V. Ovsiannikov, V. Pal’chikov, M. Takamoto, H. Katori, Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100(5), 053001 (2008). doi: 10.1103/PhysRevLett.100.053001 ADSCrossRefGoogle Scholar
  20. 20.
    J.L. Hall, Nobel lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78(4), 1279–1295 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    T.P. Heavner, S.R. Jefferts, E.A. Donley, J.H. Shirley, T.E. Parker, NIST-F1: Recent improvements and accuracy evaluations. Metrologia 42(5), 411–422 (2005). doi: 10.1088/0026-1394/42/5/012 ADSCrossRefGoogle Scholar
  22. 22.
    A. Hemmerich, T. Hänsch, Two-dimensional atomic crystal bound by light. Phys. Rev. Lett. 70(4), 410–413 (1993). doi: 10.1103/PhysRevLett.70.410 ADSCrossRefGoogle Scholar
  23. 23.
    N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates, A.D. Ludlow, An atomic clock with 10−18 instability. Science 341(6151), 1215–1218 (2013). doi: 10.1126/science.1240420 ADSCrossRefGoogle Scholar
  24. 24.
    F.-L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, H. Katori, Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer. Opt. Lett. 34(5), 692–694 (2009). doi: 10.1364/OL.34.000692
  25. 25.
    W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen, D.J. Wineland, Quantum projection noise: Population fluctuations in two-level systems. Phys. Rev. A 47(5), 3554–3570 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    H. Katori, in Spectroscopy of Strontium Atoms in the Lamb-Dicke Confinement, ed by P. Gill. Proceedings of the 6th Symposium on Frequency Standards and Metrology (World Scientific, 2002), pp. 323–330Google Scholar
  27. 27.
    H. Katori, M. Takamoto, V. Pal’chikov, V. Ovsiannikov, Ultrastable optical clock with neutral atoms in an engineered light shift trap. Phys. Rev. Lett. 91(17), 173005 (2003). doi: 10.1103/PhysRevLett.91.173005 ADSCrossRefGoogle Scholar
  28. 28.
    H. Katori, Optical lattice clocks and quantum metrology. Nat. Photon. 5, 203–210 (2011). doi: 10.1038/nphoton.2011.45 ADSCrossRefGoogle Scholar
  29. 29.
    R. Le Targat, X. Baillard, M. Fouché, A. Brusch, O. Tcherbakoff, G. Rovera, P. Lemonde, Accurate optical lattice clock with 87Sr atoms. Phys. Rev. Lett. 97(13), 130801 (2006). doi: 10.1103/PhysRevLett.97.130801 CrossRefGoogle Scholar
  30. 30.
    R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D.G. Rovera, B. Nagórny, R. Gartman, P.G. Westergaard, M.E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, J. Lodewyck, Experimental realization of an optical second with strontium lattice clocks. Nat. Commun. 4, 2109 (2013). doi: 10.1038/ncomms3109 Google Scholar
  31. 31.
    N.D. Lemke, A.D. Ludlow, Z.W. Barber, T.M. Fortier, S.A. Diddams, Y. Jiang, S.R. Jefferts, T.P. Heavner, T.E. Parker, C.W. Oates, Spin-1/2 optical lattice clock. Phys. Rev. Lett. 103(6), 063001 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    C.H. Li, A.J. Benedick, P. Fendel, A.G. Glenday, F.X. Kartner, D.F. Phillips, D. Sasselov, A. Szentgyorgyi, R.L. Walsworth, A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 452(7187), 610–612 (2008). doi: 10.1038/nature06854 ADSCrossRefGoogle Scholar
  33. 33.
    A. Ludlow, M. Boyd, T. Zelevinsky, S. Foreman, S. Blatt, M. Notcutt, T. Ido, J. Ye, Systematic study of the 87Sr clock transition in an optical lattice. Phys. Rev. Lett. 96(3), 033003 (2006). doi: 10.1103/PhysRevLett.96.033003 ADSCrossRefGoogle Scholar
  34. 34.
    L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Delivering the same optical frequency at two places: Accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19(21), 1777–1779 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    J.J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, S. Bize, Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7 × 10−15. Phys. Rev. Lett. 108(18), 183004 (2012). doi: 10.1103/PhysRevLett.108.183004 ADSCrossRefGoogle Scholar
  36. 36.
    T. Middelmann, S. Falke, C. Lisdat, U. Sterr, High accuracy correction of blackbody radiation shift in an optical lattice clock. Phys. Rev. Lett. 109(26), 236004 (2012). doi: 10.1103/PhysRevLett.109.263004 CrossRefGoogle Scholar
  37. 37.
    T. Mukaiyama, H. Katori, T. Ido, Y. Li, M. Kuwata-Gonokami, Recoil-limited laser cooling of 87Sr atoms near the fermi temperature. Phys. Rev. Lett. 90(11), 113002 (2003). doi: 10.1103/PhysRevLett.90.113002 ADSCrossRefGoogle Scholar
  38. 38.
    W. Nagourney, J. Sandberg, H. Dehmelt, Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 56(26), 2797–2799 (1986). doi: 10.1103/PhysRevLett.56.2797 ADSCrossRefGoogle Scholar
  39. 39.
    Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, F.-L. Hong, A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator. Opt. Express 18(2), 1667–1676 (2010). doi: 10.1364/OE.18.001667 ADSCrossRefGoogle Scholar
  40. 40.
    T.L. Nicholson, M.J. Martin, J.R. Williams, B.J. Bloom, M. Bishof, M.D. Swallows, S.L. Campbell, J. Ye, Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett. 109(23), 230801 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    K. Numata, A. Kemery, J. Camp, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys. Rev. Lett. 93(25), 250602 (2004). doi: 10.1103/PhysRevLett.93.250602 ADSCrossRefGoogle Scholar
  42. 42.
    V.D. Ovsiannikov, V.G. Pal’chikov, A.V. Taichenachev, V.I. Yudin, H. Katori, Multipole, nonlinear, and anharmonic uncertainties of clocks of Sr atoms in an optical lattice. Phys. Rev. A 88(1), 013405 (2013). doi: 10.1103/PhysRevA.88.013405 ADSCrossRefGoogle Scholar
  43. 43.
    W.D. Phillips, Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70(3), 721–741 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    S. Porsev, A. Derevianko, Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks. Phys. Rev. A 74(2), 020502 (2006). doi: 10.1103/PhysRevA.74.020502 ADSCrossRefGoogle Scholar
  45. 45.
    K. Predehl, G. Grosche, S.M. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T.W. Hansch, T. Udem, R. Holzwarth, H. Schnatz, A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336(6080), 441–444 (2012). doi: 10.1126/science.1218442 ADSCrossRefGoogle Scholar
  46. 46.
    T. Rosenband, W.M. Itano, P.O. Schmidt, D.B. Hume, J.C.J. Koelemeij, J.C. Bergquist, D.J. Wineland, Blackbody radiation shift of the 27Al+ 1S03P0 transition, in Frequency and Time Forum (EFTF), 2006 20th European, 27–30 March 2006 (2006), pp. 289–292Google Scholar
  47. 47.
    E. Rubiola, On the measurement of frequency and its sample variance with high-resolution counters. Rev. Sci. Instrum. 76(5), 054703 (2005). doi: 10.1063/1.1898203 ADSCrossRefGoogle Scholar
  48. 48.
    G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G.J. Dick, C. Clairon, Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. Ultrasonics, ferroelectrics and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(4), 887–894 (1998). doi: 10.1109/58.710548 CrossRefGoogle Scholar
  49. 49.
    T.R. Schibli, I. Hartl, D.C. Yost, M.J. Martin, A. Marcinkevicius, M.E. Fermann, J. Ye, Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photon. 2, 355–359 (2008). doi: 10.1038/nphoton.2008.79 ADSCrossRefGoogle Scholar
  50. 50.
    S. Schiller, G.M. Tino, P. Gill, C. Salomon, U. Sterr, E. Peik, A. Nevsky, A. Görlitz, D. Svehla, G. Ferrari, N. Poli, L. Lusanna, H. Klein, H. Margolis, P. Lemonde, P. Laurent, G. Santarelli, A. Clairon, W. Ertmer, E. Rasel, J. Müller, L. Iorio, C. Lämmerzahl, H. Dittus, E. Gill, M. Rothacher, F. Flechner, U. Schreiber, V. Flambaum, W.-T. Ni, L. Liu, X. Chen, J. Chen, K. Gao, L. Cacciapuoti, R. Holzwarth, M.P. Heß, W. Schäfer, Einstein gravity explorer–a medium-class fundamental physics mission. Exp. Astron. 23(2), 573–610 (2008). doi: 10.1007/s10686-008-9126-5 ADSCrossRefGoogle Scholar
  51. 51.
    J.A. Sherman, N.D. Lemke, N. Hinkley, M. Pizzocaro, R.W. Fox, A.D. Ludlow, C.W. Oates, High-accuracy measurement of atomic polarizability in an optical lattice clock. Phys. Rev. Lett. 108(15), 153002 (2012). doi: 10.1103/PhysRevLett.108.153002 ADSCrossRefGoogle Scholar
  52. 52.
    T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T.W. Hansch, L. Pasquini, A. Manescau, S. D’Odorico, M.T. Murphy, T. Kentischer, W. Schmidt, T. Udem, Laser frequency combs for astronomical observations. Science 321(5894), 1335–1337 (2008). doi: 10.1126/science.1161030 ADSCrossRefGoogle Scholar
  53. 53.
    M. Takamoto, F.-L. Hong, R. Higashi, Y. Fujii, M. Imae, H. Katori, Improved frequency measurement of a one-dimensional optical lattice clock with a spin-polarized fermionic 87Sr isotope. J. Phys. Soc. Jpn. 75(10), 104302 (2006). doi: 10.1143/jpsj.75.104302 ADSCrossRefGoogle Scholar
  54. 54.
    M. Takamoto, F.L. Hong, R. Higashi, H. Katori, An optical lattice clock. Nature 435(7040), 321–324 (2005). doi: 10.1038/nature03541 ADSCrossRefGoogle Scholar
  55. 55.
    M. Takamoto, H. Katori, Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice. Phys. Rev. Lett. 91(22), 223001 (2003). doi: 10.1103/PhysRevLett.91.223001 ADSCrossRefGoogle Scholar
  56. 56.
    T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82(18), 3568–3571 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, H. Katori, Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015). doi: 10.1038/nphoton.2015.5
  58. 58.
    P.G. Westergaard, J. Lodewyck, L. Lorini, A. Lecallier, E.A. Burt, M. Zawada, J. Millo, P. Lemonde, Lattice-induced frequency shifts in Sr optical lattice clocks at the 10−17 level. Phys. Rev. Lett. 106(21), 210801 (2011). doi: 10.1103/PhysRevLett.106.210801 ADSCrossRefGoogle Scholar
  59. 59.
    A. Yamaguchi, N. Shiga, S. Nagano, Y. Li, H. Ishijima, H. Hachisu, M. Kumagai, T. Ido, Stability transfer between two clock lasers operating at different wavelengths for absolute frequency measurement of clock transition in 87Sr. Appl. Phys. Express 5(2), 022701 (2012). doi: 10.1143/apex.5.022701 ADSCrossRefGoogle Scholar
  60. 60.
    M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, F.-L. Hong, Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second. Appl. Phys. Express 5(10), 102401 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82(19), 3799–3802 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Quantum Metrology LaboratoryRIKENWako-shiJapan
  2. 2.Innovative Space-Time Project, ERATO, JSTTokyoJapan
  3. 3.RIKEN Center for Advanced PhotonicsWako-shiJapan
  4. 4.Department of Applied Physics, Graduate School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations