Spin-Photon Entanglement in Semiconductor Quantum Dots: Towards Solid-State-Based Quantum Repeaters

Part of the Lecture Notes in Physics book series (LNP, volume 911)


‘In this chapter, we introduced and analyze techniques that allow truly secure secret key sharing over long distances, using public, open channels, where the laws of quantum mechanics ensure the security of the long distance key sharing – an idea generally referred to as the essence of a quantum repeater. We describe several proof-of-principle experiments where technology based on self-assembled quantum dots is used as the backbone of a future quantum repeater.’


Quantum information Quantum communication Quantum repeater Quantum dots Ultrafast quantum control Spins Quantum frequency conversion Quantum tomography 


  1. 1.
    M. Atatüre, J. Dreiser, A. Badolato, A. Imamoglu, Observation of Faraday rotation from a single confined spin. Nat. Phys. 3, 101 (2007)CrossRefGoogle Scholar
  2. 2.
    S. Ates, I. Agha, A. Gulinatti, I. Rech, M.T. Rakher, A. Badolato, K. Srinivasan, Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Phys. Rev. Lett. 109, 147405 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    M. Bayer et al., Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore (1984), p. 175Google Scholar
  6. 6.
    C.H. Bennett, G. Brassard, N.D. Mermin, Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J.A. Smolin, W.K. Wooters, Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wooters, Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Berezovsky, M.H. Mikkelsen, N.G. Stoltz, L.A. Coldren, D.D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M.J. Biercuk, H. Uys, A.P. VanDevender, N. Shiga, W.M. Itano, J.J. Bollinger, Optimized dynamical decoupling in a model quantum memory. Nature 458, 996 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    B.B. Blinov, D.L. Moehring, L.-M. Duan, C. Monroe, Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    K. De Greve, Towards Solid-State Quantum Repeaters. Springer PhD thesis series (Springer, New York, 2013)Google Scholar
  14. 14.
    K. De Greve, P.L. McMahon, D. Press, T.D. Ladd, D. Bisping, C. Schneider, M. Kamp, L. Worschech, S. Höfling, A. Forchel, Y. Yamamoto, Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872 (2011)CrossRefGoogle Scholar
  15. 15.
    K. De Greve, P.L. McMahon, L. Yu, J.S. Pelc, C. Jones, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hoefling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair. Nat. Commun. 4, 2228 (2013)Google Scholar
  16. 16.
    K. De Greve, D. Press, P.L. McMahon, Y. Yamamoto, Ultrafast optical control of individual quantum dot spin qubits. Rep. Progress Phys. 76, 092501 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    K. De Greve, L. Yu, P.L. McMahon, J.S. Pelc, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    W. Dür, H.-J. Briegel, J.I. Cirac, P. Zoller, Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169–181 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    A.K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    P. Fellahi, S.T. Yilmaz, A. Imamoglu, Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    J. Fischer, W.A. Coish, D.V. Bulaev, D. Loss, Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M. Fleischauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    K.-M.C. Fu, C. Santori, C. Stanley, M.C. Holland, Y. Yamamoto, Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor. Phys. Rev. Lett. 95, 187405 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoğlu, Entanglement between a quantum-dot-spin and a single-photon. Nature 491, 426 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    V.N. Golovach, A. Khaetskii, D. Loss, Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    A. Greilich et al., Nuclei-induced frequency focusing of electron spin coherence. Science 317(4), 1896 (2007)Google Scholar
  27. 27.
    C.K. Hong, Z.Y. Ou, Mandel L, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    A. Imamoḡlu et al., Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    K. Inoue, E. Waks, Y. Yamamoto, Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    K. Inoue, E. Waks, Y. Yamamoto, Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    C. Jones, K. De Greve, Y. Yamamoto, A high-speed optical link to entangle quantum dots. arXiv:1310.4609 (2013)Google Scholar
  33. 33.
    D. Kim, S.G. Carter, A. Greilich, A.S. Bracker, D. Gammon, Ultrafast optical control of entanglement between two quantum-dot spins. Nat. Phys. 7, 223 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G. Abstreiter, J.J. Finley, Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    T.D. Ladd, D. Press, K. De Greve, P. McMahon, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, Pulsed nuclear pumping and spin diffusion in a single charged quantum dot. Phys. Rev. Lett. 105, 107401 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    C. Latta et al., Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nat. Phys. 5, 758 (2009)CrossRefGoogle Scholar
  37. 37.
    P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, A. Imamoglu, A quantum dot single-photon turnstile device. Science 290, 2282 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    D.L. Moehring et al., Entanglement of single-atom quantum bits at a distance. Nature 449, 68 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    W.J. Munro, K.A. Harrison, A.M. Stephens, S.J. Devitt, K. Nemoto, From quantum multiplexing to high-performance quantum networking. Nat. Photonics 4, 792 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    S. Nauerth et al., Air-to-ground quantum communication. Nat. Photonics 7, 382 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    R.B. Patel, A.J. Bennett, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics 4, 632 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    J.S. Pelc, C. Langrock, Q. Zhang, M.M. Fejer, Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters. Opt. Lett. 35, 2804 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    J.S. Pelc, L. Yu, K. De Greve, P.L. McMahon, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Opt. Express 20, 27510 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, Y. Yamamoto, Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    D. Press, K. De Greve, P. McMahon, T.D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishible photons from a single-photon device. Nature 419, 594 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    J.R. Schaibley, A.P. Burgers, G.A. McCracken, L.-M. Duan, P.R. Berman, D.G. Steel, A.S Bracker, D. Gammon, L.J. Sham, Demonstration of quantum entanglement between a single electron spin confined to an InAs quantium dot and a photon. Phys. Rev. Lett. 110, 167401 (2013)Google Scholar
  51. 51.
    M.O. Scully, K. Drühl, Quantum eraser: a proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25, 2208 (1982)ADSCrossRefGoogle Scholar
  52. 52.
    C. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656 (1949)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    C. Simon et al., Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    A. Stute, B. Casabone, P. Schindler, T. Monz, P.O. Schmidt, B. Brandstätter, T.E. Northup, R. Blatt, Tunable ion-photon entanglement in an optical cavity. Nature 485, 482 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    A.N. Vamivakas, C.-Y. Lu, C. Matthiesen, Y. Zhao, S. Fält, A. Badolato, M. Atatüre, Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    I.T. Vink et al., Locking electron spins into magnetic resonance by electron–nuclear feedback. Nat. Phys. 5, 764–768 (2009)CrossRefGoogle Scholar
  59. 59.
    R.J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J.M. Garcia, W Schoenfeld, P.M. Petroff, Optical emission from a charge-tunable quantum ring. Nature 405, 926 (2000)Google Scholar
  60. 60.
    W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802 (1982)ADSCrossRefGoogle Scholar
  61. 61.
    X. Xu et al., Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459(4), 1105 (2009)Google Scholar
  62. 62.
    X. Xu, Y. Wu, B. Sun, Q. Huang, J. Cheng, D.G. Steel, A.S. Bracker, D. Gammon, C. Emary, L.J. Sham, Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    J. Yin et al., Quantum teleportation and entanglement distribution over 100-kilometre freespace channels. Nature 488, 185 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    P. Yu, M. Cardona, Fundamentals of Semiconductors – Physics and Materials Properties, 3rd edn. (Springer, Berlin/New York, 2001)Google Scholar
  65. 65.
    S. Zaske, A. Lenhard, C.A.J. Keßler, Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher, Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012)Google Scholar
  66. 66.
    M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, “Event-Ready-Detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA
  2. 2.ImPACT ProgramCouncil for Science Technology and InnovationTokyoJapan

Personalised recommendations