Advertisement

Quantum Communication Experiments Over Optical Fiber

Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

Quantum key distribution (QKD) is expected to be the first application of quantum information to be realized as a practical system. In the last decade, research on QKD made significant progress both in concept and technology. In this chapter, we review the progress of technologies designed to realize high-speed and long-distance quantum communication over optical fiber, focusing on the results obtained by NTT. The first section describes a roadmap towards scalable quantum communications, which is composed of three phases. The second section reviews our effort to realize phase 1 quantum communication systems, namely point-to-point QKD systems based on the differential phase shift QKD (DPS-QKD) protocol. The third section describes entanglement generation and application in the telecom band, which are the key technologies for realizing phase 2 and 3 systems. The final section provides a summary and describes the future outlook.

Keywords

Quantum communication Quantum key distribution Entanglement Optical fiber 

Notes

Acknowledgements

The work described here is the result of collaborations with many researchers. I would like to thank all my collaborators, in particular Prof. Kyo Inoue (Osaka University) and Dr. Toshimori Honjo (NTT Laboratories).

References

  1. 1.
    N. Gisin, R. Thew, Quantum communication. Nat. Photon. 1, 165–171 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, (1984), pp. 175–179Google Scholar
  3. 3.
    A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, J. Smolin, Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)MATHCrossRefGoogle Scholar
  5. 5.
    M. Peev et al., The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    M. Sasaki et al., Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    H.J. Briegel, W. Dur, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operation in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J.W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)ADSMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Inoue, E. Waks, Y. Yamamoto, Differential phase shift quantum Key distribution. Phys. Rev. Lett. 89, 037902 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    K. Inoue, E. Waks, Y. Yamamoto, Differential-phase-shift quantum key distribution using coherent light. Phys. Rev. A 68, 022317 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    G. Brassard, N. Lutkenhaus, T. Mor, B.C. Sanders, Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    N. Lutkenhaus, Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    N. Imoto, H.A. Haus, Y. Yamamoto, Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    W.Y. Hwang, Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    H.K. Lo, X. Ma, K. Chen, Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    X.B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    M. Curty, L.L. Zhang, H.K. Lo, N. Lutkenhaus, Sequential attacks against differential-phase-shift quantum key distribution with weak coherent states. Quant. Inf. Comput. 7, 665 (2007)MATHMathSciNetGoogle Scholar
  20. 20.
    T. Tsurumaru, Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol. Phys. Rev. A 75, 062319 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    H. Kawahara, A. Oka, K. Inoue, Differential-phase-shift quantum key distribution with phase modulation to combat sequential attacks. Phys. Rev. A 84, 052311 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    E. Waks, H. Takesue, Y. Yamamoto, Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A 73, 012344 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    K. Wen, K. Tamaki, Y. Yamamoto, Unconditional security of single-photon differential phase shift quantum key distribution. Phys. Rev. Lett. 103, 170503 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    T. Honjo, K. Inoue, H. Takahashi, Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt. Lett. 29, 2797–2799 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    H. Takesue, S.W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors. Nat. Photon. 1, 343–348 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    E. Diamanti, H. Takesue, C. Langrock, M.M. Fejer, Y. Yamamoto, 100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors. Opt. Express 14, 13073–13082 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    P.G. Kwiat, E. Waks, A.G. White, I. Appelbaum, P.H. Eberhard, Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    J. Brendel, N. Gisin, W. Tittel, H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594–2597 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    H. Takesue, K. Inoue, Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop. Phys. Rev. A 70, 031802(R) (2004)Google Scholar
  32. 32.
    H. Takesue, K. Inoue, Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers. Phys. Rev. A 72, 041804(R) (2005)Google Scholar
  33. 33.
    T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, K. Inoue, Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. Opt. Express 15, 13957–13964 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, Entanglement generation using silicon wire waveguide. Appl. Phys. Lett. 91, 201108 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, Generation of high-purity entangled photon pairs using silicon wire waveguide. Opt. Express 16, 20368–20373 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, H. Takesue, Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, Long-distance entanglement-based quantum key distribution experiment using practical detectors. Opt. Express 18, 16777–16787 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    W. Tittel, J. Brendel, H. Zbinden, N. Gisin, Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    N. Namekata, S. Sasamori, S. Inoue, 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Opt. Express 14, 10043–10049 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    M. Koashi, Y. Adachi, T. Yamamoto, N. Imoto, Security of entanglement-based quantum key distribution with practical detectors. arXiv:0804.0891 (2008)Google Scholar
  41. 41.
    T. Honjo, S.W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, Y. Yamamoto, Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express 16, 19118–19126 (2008)Google Scholar
  42. 42.
    M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, H. Zbinden, Entangling independent photons by time measurement. Nat. Phys. 3, 692–695 (2007)CrossRefGoogle Scholar
  43. 43.
    H. Takesue, B. Miquel, Entanglement swapping using telecom-band photons generated in fibers. Opt. Express 17, 10748–10756 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Xue, A. Yoshizawa, H. Tsuchida, Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources. Phys. Rev. A 85, 032337 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    H. Takesue, K. Inoue, 1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. Opt. Express 13, 7832–7839 (2005)Google Scholar
  46. 46.
    A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)ADSMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    F. Marsili et al., Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    A.I. Lvovsky, B.C. Sanders, W. Tittel, Optical quantum memory. Nat. Photon. 3, 706–714 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    F. Benabid, P.S. Light, F. Couny, P. St. J. Russell, Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF. Opt. Express 13, 5694–5703 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Gisin, Approaches for a quantum memory at telecommunication wavelengths. Phys. Rev. A 83, 012318 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476–1478 (1990)ADSCrossRefGoogle Scholar
  52. 52.
    C. Langrock, E. Diamanti, R.V. Roussev, Y. Yamamoto, M.M. Fejer, H. Takesue, Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett. 30, 1725–1727 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisinand, H. Zbinden, A photonic quantum information interface. Nature 437, 116 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    H. Takesue, Erasing distinguishability using quantum frequency up-conversion. Phys. Rev. Lett. 101, 173901 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    H. Takesue, Single-photon frequency down-conversion experiment. Phys. Rev. A 82, 013833 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)ADSMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    J.P. Sprengers et al., Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    W.H.P. Pernice et al., High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    H. Takesue, N. Matsuda, E. Kuramochi, W.J. Munro, M. Notomi, An on-chip coupled resonator optical waveguide single-photon buffer. Nat. Commun. 4, 2725 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    S. Mino, H. Yamazaki, T. Goh, T. Yamada, Multilevel optical modulator utilizing PLC-LiNbO3 hybrid-integration technology. NTT Tech. Rev. 9(3), (2011). https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201103fa8.pdf&mode=show_pdf

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.NTT Basic Research LaboratoriesNTT CorporationAtsugiJapan

Personalised recommendations