Skip to main content

Molecular Spin Qubits: Molecular Optimization of Synthetic Spin Qubits, Molecular Spin AQC and Ensemble Spin Manipulation Technology

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

Abstract

Molecular spin qubits are intrinsically synthetic material spins, because molecular optimization to make matter spin qubits requires use of actual, open shell chemical entities. In this contribution, we describe g-tensor or pseudo g-tensor (hyperfine A) engineering approaches affording a generalized synthetic optimization strategy. Small-scale molecular spin qubits have been synthesized, allowing us to establish Controlled-NOT gate operations in the smallest ensemble molecular electron spin quantum system. In quest of scalable qubit systems, synthetic approaches to the Lloyd model of electron spin versions are described. In most of such molecular spin systems, termed molecular spins, unpaired electrons play the role of bus qubits and nuclear spins in the topological network of molecular frames are client qubits. Thus, extended pulse-based microwave technology for rf and conventional microwave frequency regions has been implemented to control both electron and nuclear spin qubits in an equivalent manner. In this context, molecular-spin based adiabatic quantum computers and multi-spin quantum cybernetic control via a single spin qubit are described as relevant spin technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. (a) K. Itoh, M. Kinoshita (ed.), Molecular Magnetism. (Kodansha, and Gorden and Breach Scientific Publisher, Tokyo, 2000), pp. 1–347. (b) K. Itoh, T. Takui, Proc. Acad. Soc. Jpn. 41, 1 (2003)

    Google Scholar 

  2. E. Coronado, A.J. Epstein, J. Mater. Chem. 19, 1670–1770 (2009)

    Article  Google Scholar 

  3. (a) M. Mehring, J. Mende, Phys. Rev. A 73, 052303 (2006). (b) K. Sato, S. Najazawa, Y. Morita, et al, J. Mater. Chem. 19, 3739–3754 (2009)

    Google Scholar 

  4. Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 3, 197–204 (2011)

    Article  Google Scholar 

  5. D.P. DiVincenzo, in Mesoscopic Electron Transport, ed. by I. Kowenhoven, G. Shen, I. Shon. NATO ASI Series F (Kluwer, Dordrecht, 1997), p. 657. cond-mat/9612126

    Chapter  Google Scholar 

  6. S. Lloyd, Sci. Am. 73, 140–145 (1995)

    Article  Google Scholar 

  7. Y. Kawano, S. Yamashita, M. Kitagawa, Phys. Rev. A 72, 20301 (2005)

    Article  Google Scholar 

  8. Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K. Sato, M. Kitagawa, K. Nakasuji, T. Takui, J. Am. Chem. Soc. 132, 6944–6946 (2010)

    Article  Google Scholar 

  9. H. Atsumi, K. Maekawa, S. Nakazawa, D. Shiomi, K. Sato, M. Kitagawa, T. Takui, K. Nakatani, Chem. Eur. J. 18, 173–183 (2012)

    Article  Google Scholar 

  10. S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, R.D. Rahimi, K. Sato, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, H. Hara, P. Carl, P. Hoefer, T. Takui, Angew. Chem. Int. Ed. 51, 9860–9864 (2012)

    Article  Google Scholar 

  11. E. Farhi, J. Goldstone, S. Gutman, M. Sipser. arXiv:quant-ph/0001106

    Google Scholar 

  12. P.W. Shor, J. SIAM, Sci. Stat. Comput. 26, 1484–1509 (1997)

    MATH  Google Scholar 

  13. C-Y. Lu, D.E. Browne, T. Yang, J-W. Pan, Phys. Rev. Lett. 99, 250504 (2007); B.P. Lanyon, T.J. Weinhold, N.K. Langford, M. Barbieri, D.F.V. James, A. Gilchrist, A.G. White, Phys. Rev. Lett. 99, 250505 (2007); A. Politi, J.C.F. Matthews, J.L. O’Brien, Science 325, 1221 (2009); E.L.A. Martine-Lopez, T. Lawson, X.Q. Zhou, J.L. O’Brien, Nat. Photon 6, 773–776 (2012); E. Lucero, Nat. Phys. 8, 719–723 (2012).

    Google Scholar 

  14. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chung, Nature 414, 883–887 (2001)

    Article  ADS  Google Scholar 

  15. X.-H. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, J. Du, Phys. Rev. Lett. 101, 220405 (2008)

    Article  ADS  Google Scholar 

  16. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev, SIAM J. Comput. 37, 166–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. S.P. Jordan, E. Farhi, P.W. Shor, Phys. Rev. A 74, 052322 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Twamley, Phys. Rev. A 67, 052318 (2003); Blank, A., arXiv:1302.1653

    Google Scholar 

  19. A.G.M. Barrett, G.R. Hanson, A.J.P. White, D.J. Williams, A.S. Micallef, Tetrahedron 63, 5244–5250 (2007)

    Article  Google Scholar 

  20. T. Yoshino, S. Nishida, K. Sato, S. Nakazawa, R.D. Rahimi, K. Toyota, D. Shiomi, Y. Morita, M. Kitagawa, T. Takui, J. Phys. Chem. Lett. 2, 449–453 (2011)

    Article  Google Scholar 

  21. C.H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T.F. Havel, D.G. Cory, Phys. Rev. A 61, 012302 (1993)

    Article  ADS  Google Scholar 

  22. D. D’Alessandro, Introduction to Quantum Control and Dynamics (Taylor and Francis, Boca Raton, 2008)

    MATH  Google Scholar 

  23. D. Burgarth,K. Maruyama, M. Murphy, S. Montangero, T. Calarco, F. Nori, M.B. Plenio, Phys. Rev. A 81, 040303(R) (2010)

    Google Scholar 

  24. S. Machnes, U. Sander, S.L. Glaser, P. de Fouquières, A. Gruslys, S. Schirmer, T. Schulte-Herbrüggen, Phys. Rev. A 84, 022305 (2011)

    Google Scholar 

  25. J.S. Hodges, J.C. Yang, C. Ramanathan, D.G. Cory, Phys. Rev. A 78, 010303 (2008)

    Article  ADS  Google Scholar 

  26. Y. Zhang, C.A. Ryan, R. Laflamme, J. Baugh, Phys. Rev. Lett. 78, 010303 (2008)

    Google Scholar 

  27. T. Yoshino, Quantum-State Manipulation of Molecular Spin-Bus Qubits by Pulsed Electron-Nuclear Multiple Resonance Technique. Ph.D. Thesis, Osaka City University, 2011

    Google Scholar 

Download references

Acknowledgments

This work has been supported by Grants-in-Aid for Scientific Research on Innovative Areas “Quantum Cybernetics” and Scientific Research (B) from MEXT, Japan. The support for the present work by the FIRST project on “Quantum Information Processing” from JSPS, Japan and by the AOARD project on “Quantum Properties of Molecular Nanomagnets” (Award No. FA2386-13-1-4030) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeji Takui .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix 28.1

The details of the rotation angle are shown in (a) where a n and b are (n/5)2 and 0.028, respectively. The operation times are shown in (b).

  1. (a)

    Rotation angles

     

    Direction

    Angle

    1

    x-

    30(1 − a n )b/2

    2

    y-

    84a n b

    3

    y-

    88a n b

    4

    y-

    44a n b

    5

    x-

    30(1 − a n )b/2 + π/2

  2. (b)

    Operation times

     

    3e system

    1e + 2n system

    t 1

    −π/j 31

    −π/A 31

    t 2

    64s n τ/j 12

    64s n τ/A 12

    t 3

    80s n τ/j 12

    80s n τ/A 12

    t 4

    −40s n τ/j 31

    40s n τ/A 31

    t 5

    −80s n τ/j 23

    t 6

    π/A 12

1.2 Appendix 28.2

The Trotter’s formula of the Eq. (28.3) where b is 0.028.

$$ \begin{aligned}\hfill U&={\displaystyle \prod_{m=1}^5 \exp \left\{-i\left(1-{\left(m/5\right)}^2\right){\widehat{H}}_i\left(b/2\right)\right\}}\hfill \\ &\quad \hfill \times \exp \left\{-i{\left(m/5\right)}^2{\widehat{H}}_fb\right\}\times \exp \left\{-i\left(1-{\left(m/5\right)}^2\right){\widehat{H}}_i\left(b/2\right)\right\}\hfill \end{aligned} $$
(28.19)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nakazawa, S. et al. (2016). Molecular Spin Qubits: Molecular Optimization of Synthetic Spin Qubits, Molecular Spin AQC and Ensemble Spin Manipulation Technology. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_28

Download citation

Publish with us

Policies and ethics