Advertisement

Molecular Spin Qubits: Molecular Optimization of Synthetic Spin Qubits, Molecular Spin AQC and Ensemble Spin Manipulation Technology

  • Shigeaki Nakazawa
  • Shinsuke Nishida
  • Kazunobu Sato
  • Kazuo Toyota
  • Daisuke Shiomi
  • Yasushi Morita
  • Kenji Sugisaki
  • Elham Hosseini
  • Koji Maruyama
  • Satoru Yamamoto
  • Masahiro Kitagawa
  • Takeji Takui
Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

Molecular spin qubits are intrinsically synthetic material spins, because molecular optimization to make matter spin qubits requires use of actual, open shell chemical entities. In this contribution, we describe g-tensor or pseudo g-tensor (hyperfine A) engineering approaches affording a generalized synthetic optimization strategy. Small-scale molecular spin qubits have been synthesized, allowing us to establish Controlled-NOT gate operations in the smallest ensemble molecular electron spin quantum system. In quest of scalable qubit systems, synthetic approaches to the Lloyd model of electron spin versions are described. In most of such molecular spin systems, termed molecular spins, unpaired electrons play the role of bus qubits and nuclear spins in the topological network of molecular frames are client qubits. Thus, extended pulse-based microwave technology for rf and conventional microwave frequency regions has been implemented to control both electron and nuclear spin qubits in an equivalent manner. In this context, molecular-spin based adiabatic quantum computers and multi-spin quantum cybernetic control via a single spin qubit are described as relevant spin technology.

Keywords

Molecular spin qubits Lloyd model Adiabatic quantum computing 

Notes

Acknowledgments

This work has been supported by Grants-in-Aid for Scientific Research on Innovative Areas “Quantum Cybernetics” and Scientific Research (B) from MEXT, Japan. The support for the present work by the FIRST project on “Quantum Information Processing” from JSPS, Japan and by the AOARD project on “Quantum Properties of Molecular Nanomagnets” (Award No. FA2386-13-1-4030) is also acknowledged.

References

  1. 1.
    (a) K. Itoh, M. Kinoshita (ed.), Molecular Magnetism. (Kodansha, and Gorden and Breach Scientific Publisher, Tokyo, 2000), pp. 1–347. (b) K. Itoh, T. Takui, Proc. Acad. Soc. Jpn. 41, 1 (2003)Google Scholar
  2. 2.
    E. Coronado, A.J. Epstein, J. Mater. Chem. 19, 1670–1770 (2009)CrossRefGoogle Scholar
  3. 3.
    (a) M. Mehring, J. Mende, Phys. Rev. A 73, 052303 (2006). (b) K. Sato, S. Najazawa, Y. Morita, et al, J. Mater. Chem. 19, 3739–3754 (2009)Google Scholar
  4. 4.
    Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 3, 197–204 (2011)CrossRefGoogle Scholar
  5. 5.
    D.P. DiVincenzo, in Mesoscopic Electron Transport, ed. by I. Kowenhoven, G. Shen, I. Shon. NATO ASI Series F (Kluwer, Dordrecht, 1997), p. 657. cond-mat/9612126CrossRefGoogle Scholar
  6. 6.
    S. Lloyd, Sci. Am. 73, 140–145 (1995)CrossRefGoogle Scholar
  7. 7.
    Y. Kawano, S. Yamashita, M. Kitagawa, Phys. Rev. A 72, 20301 (2005)CrossRefGoogle Scholar
  8. 8.
    Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K. Sato, M. Kitagawa, K. Nakasuji, T. Takui, J. Am. Chem. Soc. 132, 6944–6946 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Atsumi, K. Maekawa, S. Nakazawa, D. Shiomi, K. Sato, M. Kitagawa, T. Takui, K. Nakatani, Chem. Eur. J. 18, 173–183 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, R.D. Rahimi, K. Sato, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, H. Hara, P. Carl, P. Hoefer, T. Takui, Angew. Chem. Int. Ed. 51, 9860–9864 (2012)CrossRefGoogle Scholar
  11. 11.
    E. Farhi, J. Goldstone, S. Gutman, M. Sipser. arXiv:quant-ph/0001106Google Scholar
  12. 12.
    P.W. Shor, J. SIAM, Sci. Stat. Comput. 26, 1484–1509 (1997)MATHGoogle Scholar
  13. 13.
    C-Y. Lu, D.E. Browne, T. Yang, J-W. Pan, Phys. Rev. Lett. 99, 250504 (2007); B.P. Lanyon, T.J. Weinhold, N.K. Langford, M. Barbieri, D.F.V. James, A. Gilchrist, A.G. White, Phys. Rev. Lett. 99, 250505 (2007); A. Politi, J.C.F. Matthews, J.L. O’Brien, Science 325, 1221 (2009); E.L.A. Martine-Lopez, T. Lawson, X.Q. Zhou, J.L. O’Brien, Nat. Photon 6, 773–776 (2012); E. Lucero, Nat. Phys. 8, 719–723 (2012).Google Scholar
  14. 14.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chung, Nature 414, 883–887 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    X.-H. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, J. Du, Phys. Rev. Lett. 101, 220405 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev, SIAM J. Comput. 37, 166–194 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    S.P. Jordan, E. Farhi, P.W. Shor, Phys. Rev. A 74, 052322 (2006)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Twamley, Phys. Rev. A 67, 052318 (2003); Blank, A., arXiv:1302.1653Google Scholar
  19. 19.
    A.G.M. Barrett, G.R. Hanson, A.J.P. White, D.J. Williams, A.S. Micallef, Tetrahedron 63, 5244–5250 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Yoshino, S. Nishida, K. Sato, S. Nakazawa, R.D. Rahimi, K. Toyota, D. Shiomi, Y. Morita, M. Kitagawa, T. Takui, J. Phys. Chem. Lett. 2, 449–453 (2011)CrossRefGoogle Scholar
  21. 21.
    C.H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T.F. Havel, D.G. Cory, Phys. Rev. A 61, 012302 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    D. D’Alessandro, Introduction to Quantum Control and Dynamics (Taylor and Francis, Boca Raton, 2008)MATHGoogle Scholar
  23. 23.
    D. Burgarth,K. Maruyama, M. Murphy, S. Montangero, T. Calarco, F. Nori, M.B. Plenio, Phys. Rev. A 81, 040303(R) (2010)Google Scholar
  24. 24.
    S. Machnes, U. Sander, S.L. Glaser, P. de Fouquières, A. Gruslys, S. Schirmer, T. Schulte-Herbrüggen, Phys. Rev. A 84, 022305 (2011)Google Scholar
  25. 25.
    J.S. Hodges, J.C. Yang, C. Ramanathan, D.G. Cory, Phys. Rev. A 78, 010303 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Zhang, C.A. Ryan, R. Laflamme, J. Baugh, Phys. Rev. Lett. 78, 010303 (2008)Google Scholar
  27. 27.
    T. Yoshino, Quantum-State Manipulation of Molecular Spin-Bus Qubits by Pulsed Electron-Nuclear Multiple Resonance Technique. Ph.D. Thesis, Osaka City University, 2011Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Shigeaki Nakazawa
    • 1
    • 2
  • Shinsuke Nishida
    • 3
  • Kazunobu Sato
    • 1
    • 2
  • Kazuo Toyota
    • 1
    • 2
  • Daisuke Shiomi
    • 1
    • 2
  • Yasushi Morita
    • 4
  • Kenji Sugisaki
    • 1
    • 2
  • Elham Hosseini
    • 1
    • 2
  • Koji Maruyama
    • 1
  • Satoru Yamamoto
    • 1
  • Masahiro Kitagawa
    • 5
    • 2
  • Takeji Takui
    • 1
    • 2
  1. 1.Department of Chemistry and Molecular Materials Science, Graduate School of ScienceOsaka City UniversitySumiyoshiJapan
  2. 2.FIRST project on “Quantum Information Processing”, JSPSTokyoJapan
  3. 3.Department of Chemistry, Graduate School of ScienceOsaka UniversityToyonakaJapan
  4. 4.Department of Applied Chemistry, Faculty of EngineeringAichi Institute of TechnologyYakusaJapan
  5. 5.Division of Advanced Electronics and Optical Science, Department of System Innovation, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations