Silicon Quantum Information Processing

Part of the Lecture Notes in Physics book series (LNP, volume 911)


Recent developments towards utilizing electron and nuclear spins in silicon as quantum bits for quantum information processing are reviewed. Motivated by the seminal proposal of a silicon-based quantum computer by Kane in 1998, quantum entanglement between electron and nuclear spins of phosphorus donors in silicon, and quantum memory operation of 29Si nuclear spins in silicon have been demonstrated in the lab. In all of these studies utilizing ensemble of qubits in silicon, isotope engineering has played an important role in extending the coherence time and eliminating the inhomogeneous broadening. Furthermore, fundamental qubit performance of single electron and nuclear spins will be discussed assuming a single electron transistor device.


Solid-state quantum computing Silicon quantum computing Entanglement Isotope engineering 


  1. 1.
    B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998). doi: 10.1038/30156 ADSCrossRefGoogle Scholar
  2. 2.
    T.D. Ladd, J.R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, K.M. Itoh, All-silicon quantum computer. Phys. Rev. Lett. 89, 017901 (2002). doi: 10.1103/PhysRevLett.89.017901 ADSCrossRefGoogle Scholar
  3. 3.
    A.G. Fowler, Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012). doi: 10.1103/PhysRevA.86.032324 ADSCrossRefGoogle Scholar
  4. 4.
    J.J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim, J.J.L. Morton, D.N. Jamieson, A.S. Dzurak, A. Morello, A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012). doi: 10.1038/nature11449 ADSCrossRefGoogle Scholar
  5. 5.
    J.J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim, J.J.L. Morton, F.A. Zwanenburg, D.N. Jamieson, A.S. Dzurak, A. Morello, High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013). doi: 10.1038/nature12011 ADSCrossRefGoogle Scholar
  6. 6.
    A. Morello, Quantum Information: Atoms and circuits unite in silicon. Nat. Nanotechnol. 8, 233–234 (2013). doi: 10.1038/nnano.2013.50 ADSCrossRefGoogle Scholar
  7. 7.
    S. Simmons, R.M. Brown, H. Riemann, N.V. Abrosimov, P. Becker, H.J. Pohl, M.L.W. Thewalt, K.M. Itoh, J.J.L. Morton, Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011). doi: 10.1038/nature09696 ADSCrossRefGoogle Scholar
  8. 8.
    T. Sekiguchi, M. Steger, K. Saeedi, M.L.W. Thewalt, H. Riemann, N.V. Abrosimov, N. Nötzel, Hyperfine structure and nuclear hyperpolarization observed in the bound exciton luminescence of Bi donors in batural Si. Phys. Rev. Lett. 104, 137402 (2010). doi: 10.1103/PhysRevLett.104.137402 ADSCrossRefGoogle Scholar
  9. 9.
    D.R. McCamey, J. van Tol, G.W. Morley, C. Boehme, Fast nuclear spin hyperpolarization of phosphorus in silicon. Phys. Rev. Lett. 102, 4 (2009). doi: 10.1103/PhysRevLett.102.027601 CrossRefGoogle Scholar
  10. 10.
    M. Steger, K. Saeedi, M.L.W. Thewalt, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”. Science 336, 1280–1283 (2012). doi: 10.1126/science.1217635 ADSCrossRefGoogle Scholar
  11. 11.
    M.L.W. Thewalt, A. Yang, M. Steger, D. Karaiskaj, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D. Bulanov, I.D. Kovalev, A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.-J. Pohl, E.E. Haller, J.W. Ager, K.M. Itoh, Direct observation of the donor nuclear spin in a near-gap bound exciton transition: 31P in highly enriched 28Si. J. Appl. Phys. 101, 081724 (2007). doi: 10.1063/1.2723181 ADSCrossRefGoogle Scholar
  12. 12.
    M. Steger, T. Sekiguchi, A. Yang, K. Saeedi, M.E. Hayden, M.L.W. Thewalt, K.M. Itoh, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, Optically-detected NMR of optically-hyperpolarized 31P neutral donors in 28Si. J. Appl. Phys. 109, 102411 (2011). doi: 10.1063/1.3577614 ADSCrossRefGoogle Scholar
  13. 13.
    H. Hayashi, T. Itahashi, K.M. Itoh, L.S. Vlasenko, M.P. Vlasenko, Dynamic nuclear polarization of 29Si nuclei in isotopically controlled phosphorus doped silicon. Phys. Rev. B 80, 045201 (2009). doi: 10.1103/PhysRevB.80.045201 ADSCrossRefGoogle Scholar
  14. 14.
    T. Itahashi, H. Hayashi, M.R. Rahman, K.M. Itoh, L.S. Vlasenko, M.P. Vlasenko, D.S. Poloskin, Optical and dynamic nuclear polarization of 29Si nuclei via photoexcited triplet states of oxygen-vacancy complexes in isotopically controlled silicon. Phys. Rev. B 87, 075201 (2013). doi: 10.1103/PhysRevB.87.075201 ADSCrossRefGoogle Scholar
  15. 15.
    W. Akhtar, V. Filidou, T. Sekiguchi, E. Kawakami, T. Itahashi, L. Vlasenko, J.J.L. Morton, K.M. Itoh, Coherent storage of photoexcited triplet states using 29Si nuclear spins in silicon. Phys. Rev. Lett. 108, 097601 (2012). doi: 10.1103/PhysRevLett.108.097601 ADSCrossRefGoogle Scholar
  16. 16.
    A.M. Tyryshkin, S.A. Lyon, A.V. Astashkin, A.M. Raitsimring, Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003). doi: 10.1103/PhysRevB.68.193207 ADSCrossRefGoogle Scholar
  17. 17.
    A.M. Tyryshkin, S. Tojo, J.J.L. Morton, H. Riemann, N.V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M.L.W. Thewalt, K.M. Itoh, S.A. Lyon, Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012). doi: 10.1038/nmat3182 ADSCrossRefGoogle Scholar
  18. 18.
    E. Abe, K.M. Itoh, J. Isoya, S. Yamasaki, Electron-spin phase relaxation of phosphorus donors in nuclear-spin-enriched silicon. Phys. Rev. B 70, 033204 (2004). doi: 10.1103/PhysRevB.70.033204 ADSCrossRefGoogle Scholar
  19. 19.
    E. Abe, A.M. Tyryshkin, S. Tojo, J.J.L. Morton, W.M. Witzel, A. Fujimoto, J.W. Ager, E.E. Haller, J. Isoya, S.A. Lyon, M.L.W. Thewalt, K.M. Itoh, Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei. Phys. Rev. B 82, 121201 (2010). doi: 10.1103/PhysRevB.82.121201 ADSCrossRefGoogle Scholar
  20. 20.
    J.J.L. Morton, A.M. Tyryshkin, R.M. Brown, S. Shankar, B.W. Lovett, A. Ardavan, T. Schenkel, E.E. Haller, J.W. Ager, S.A. Lyon, Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008). doi: 10.1038/nature07295 ADSCrossRefGoogle Scholar
  21. 21.
    Brower, Electron Paramagnetic Resonance of the Neutral (S = 1) One-Vacancy–Oxygen Center in Irradiated Silicon. Phys. Rev. B 4, 1968–1982 (1971). doi: 10.1103/PhysRevB.4.1968
  22. 22.
    A. Dementyev, D. Li, K. MacLean, S. Barrett, Anomalies in the NMR of silicon: Unexpected spin echoes in a dilute dipolar solid. Phys. Rev. B 68, 153302 (2003). doi: 10.1103/PhysRevB.68.153302 ADSCrossRefGoogle Scholar
  23. 23.
    W.M. Witzel, M.S. Carroll, L. Cywinski, S. Das Sarma, Quantum decoherence of the central spin in a sparse system of dipolar coupled spins. Phys. Rev. B 86, 035452 (2012). doi: 10.1103/PhysRevB.86.035452 ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Applied Physics and Physico-InformaticsKeio UniversityYokohamaJapan

Personalised recommendations