Spin Qubits with Semiconductor Quantum Dots

  • Seigo Tarucha
  • Michihisa Yamamoto
  • Akira Oiwa
  • Byung-Soo Choi
  • Yasuhiro Tokura
Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

This section describes recent progresses on the research of spin qubits realized in semiconductor quantum dot (QD) systems. After we argue the scheme of initialization and detection of individual spin states, we discuss the key idea of the universal gates constituted with QDs proposed by D. Loss and D. P. DiVincenzo. In order to achieve universal quantum gate operations, we need single qubit coherent manipulations and two qubit controlled-NOT or control-Z gates. For the first type of gate, instead of the standard rf magnetic field driven electron spin resonance (ESR), we proposed and implemented electric dipole induced spin resonance (EDSR), which has various advantages over ESR, including low dissipation, individual access to the spins and integrability. We describes recent progress in the fast Rabi oscillations. The second type of gate can be realized by the exchange coupling between nearby QDs. We also discuss the experiments combining single- and two-qubit operations. Finally, we argue the progress of the coupling of the spins in QDs with the “flying qubits”, namely, photons of visible or microwave and itinerant electrons in the wave guides.

Keywords

Spin qubits Semiconductor quantum dot Electric dipole spin resonance Flying qubits 

Notes

Acknowledgements

Part of this work was supported financially by JSPS MEXT Grant-in-Aid for Scientific Research on Innovative Areas (Grant No. 21102003) and Funding Program for World-Leading Innovative R&D Science and Technology (FIRST).

References

  1. 1.
    T. Asayama, T. Fujita, H. Kiyama, G. Allison, A.D. Wieck, A. Oiwa, S. Tarucha (unpublished)Google Scholar
  2. 2.
    S.D. Barrett, T.M. Stace, Continuous measurement of a microwave-driven solid state qubit. Phys. Rev. Lett. 96, 017405 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Bell, Electric dipole spin transition in InSb. Phys. Rev. Lett. 9, 52–54 (1962)ADSCrossRefGoogle Scholar
  4. 4.
    R. Brunner, Y.-S. Shin, T. Obata, Y. Tokura, M. Pioro-Ladrière, T. Kubo, T. Taniyama, S. Tarucha, Realization of a spin two-qubit gate with semiconductor quantum dots using an inhomogeneous Zeeman field. Phys. Rev. Lett. 107, 146801 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G. Burkard, D. Loss, D.P. DiVincenzo, Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999); G. Burkard, G. Seelig, D. Loss, Spin interactions and switching in vertically tunnel-coupled quantum dots. Phys. Rev. B 62, 2581–2592 (2000)Google Scholar
  6. 6.
    R.S. Deacon, Y. Kanai, S. Takahashi, A. Oiwa, K. Yoshida, K. Shibata, K. Hirakawa, Y. Tokura, S. Tarucha, Electrically tuned g-tensor in an InAs self-assembled quantum dot. Phys. Rev. B 84, 041302(R) (2011)Google Scholar
  7. 7.
    J.M. Elzerman, R. Hanson, L.H. Willems van Beveren, B. Witkamp, L.M.K. Vandersypen, L.P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot. Nature (London) 430, 431 (2004)Google Scholar
  8. 8.
    T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, S. Tarucha, Allowed and forbidden transitions in artificial hydrogen and helium atoms. Nature 419, 278 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A.D. Wieck, A. Oiwa, S. Tarucha, Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot. Phys. Rev. Lett. 110, 266803–266807 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    V.N. Golovach, M. Borhani, D. Loss, Electric-dipoleinduced spin resonance in quantum dots. Phys. Rev. B 74, 165319–165322 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    T. Hatano, M. Stopa, S. Tarucha, Single-electron delocalization in hybrid vertical-lateral double quantum dots. Science 309, 268 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A.D. Wieck, L. Saminadayar, C. Bauerle, T. Meunier, Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S.M. Huang, Y. Tokura, H. Akimoto, K. Kono, J.J. Lin, S. Tarucha, K. Ono, Spin bottleneck in resonant tunneling through double quantum dots with different Zeeman splittings. Phys. Rev. Lett. 104, 136801 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    X. Hu, S. Das Sarma, Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule. Phys. Rev. A 61, 062301–062319 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Kato, R.C. Myers, D.C. Driscoll, A.C. Gossard, J. Levy, D.D. Awschalom, Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    F.H.L. Koppens, D. Klauser, W.A. Coish, K.C. Nowack, L.P. Kouwenhoven, D. Loss, L.M.K. Vandersypen, Universal phase shift and nonexponential decay of driven single-spin oscillations. Phys. Rev. Lett. 99, 106803 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    H. Kosaka, H. Shigyou, Y. Mitsumori, Y. Rikitake, H. Imamura, T. Kutsuwa, K. Arai, E. Edamatsu, Coherent transfer of light polarization to electron spins in a semiconductor. Phys. Rev. Lett. 100, 096602–096605 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    K.P. Kouwenhoven, D.G. Austing, S. Tarucha, Few-electron quantum dots. Rep. Prog. Phys. 64, 701 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    L.S. Levitov, E.I. Rashba, Dynamical spin-electric coupling in a quantum dot. Phys. Rev. B 67, 115324 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    R. Li, J.Q. You, C.P. Sun, F. Nori, Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance. Phys. Rev. Lett. 111, 086805 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    D. Loss, D. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    S. Maekawa, Concept of Spin Electronics (Oxford University Press, Oxford/New York, 2006)CrossRefGoogle Scholar
  25. 25.
    B.D. McCombe, S.G. Bishop, R. Kaplan, Combined resonance and electron g values in insb. Phys. Rev. Lett. 18, 748–750 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    F. Meier, B.P. Zakharchenya (eds.), Optical Orientation (Elsevier, Amsterdam, 1984)Google Scholar
  28. 28.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)MATHGoogle Scholar
  29. 29.
    K.C. Nowack, F.H.L. Koppens, Y.V. Nazarov, L.M.K. Vandersypen, Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    T. Obata, M. Pioro-Ladriere, Y. Tokura, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha, Coherent manipulation of individual electron spin in a double quantum dot integrated with a micromagnet. Phys. Rev. B 81, 085317 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    K. Ono, D.G. Austing, Y. Tokura, S. Tarucha, Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    A. Pioda, E. Totoki, H. Kiyama, T. Fujita, G. Allison, T. Asayama, A. Oiwa, S. Tarucha, Single-shot detection of trapping and resetting single electrons generated by single photons in a lateral quantum dot. Phys. Rev. Lett. 106, 146804–146807 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, S. Tarucha, Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008)CrossRefGoogle Scholar
  35. 35.
    E.I. Rashba, Theory of electric dipole spin resonance in quantum dots: mean field theory with gaussian fluctuations and beyond. Phys. Rev. B 78, 195302 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    E.I. Rashba, V.I. Sheka, Electron-dipole spin resonance, in Landau Level Spectroscopy, chapter 4, ed. by G. Landwehr, E.I. Rashba (Amsterdam, North-Holland, 1991), pp. 131–206CrossRefGoogle Scholar
  37. 37.
    G. Salis, Y. Kato, K. Ensslin, D.C. Driscoll, A.C. Gossard, D.D. Awschalom, Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    Y.-S. Shin, T. Obata, M. Pioro-Ladriere, Y. Tokura, R. Brunner, T. Kubo, K. Yoshida, S. Tarucha, Single-spin readout in a double quantum dot integrated with a micromagnet. Phys. Rev. Lett. 104, 046802 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    M.D. Shulman, O.E. Dial, S.P. Narvey, H. Bluhm, V. Umansky, A. Yacoby, Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    C.P. Slichter, Principles of Magnetic Resonance. Springer Series in Solid-State Sciences, 3rd edn. (Cambridge University Press, Cambridge, 1996)Google Scholar
  41. 41.
    D. Stepanenko, N.E. Bonesteel, D.P. DiVincenzo, G. Burkard, D. Loss, Spin-orbit coupling and time-reversal symmetry in quantum gates. Phys. Rev. B 68, 115306–115314 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    S. Tarucha, Y. Tokura, Control over single electron spins in quantum-dots, in Comprehensive Semiconductor Science and Technology, ed. by P. Bhattacharya, R. Fornari, H. Kamimura. Physics and Fundamental Theory, vol. 2 (Elsevier, Amsterdam, 2011), pp. 23–67Google Scholar
  43. 43.
    S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    J.M. Taylor, J.R. Petta, A.C. Johnson, A. Yacoby, C.M. Marcus, M.D. Lukin, Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Tokura, W.G. van der Wiel, T. Obata, S. Tarucha, Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202–047205 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Tokura, T. Kubo, W.J. Munro, Power dependence of electric dipole spin resonance. JPS Conf. Proc. 1, 012022 (2014)Google Scholar
  47. 47.
    Y. Tomita, M. Gutiérrez, C. Kabytayev, K.R. Brown, M.R. Hutsel, A.P. Morris, K.E. Stevens, G. Mohler, Comparison of ancilla preparation and measurement procedures for the steane [[7,1,3]] code on a model ion-trap quantum computer. Phys. Rev. A 88, 042336 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    L.M.K. VanderSypen, I.L. Chuang, NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    R. Vrijen, E. Yablonovitch, A spin-coherent semiconductor photo-detector for quantum communication. Physica E 10, 569–575 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    J. Yoneda, T. Otsuka, T. Nakajima, T. Takakura, T. Obata, M. Pioro-Ladriere, H. Lu, C.J. Palmstrom, A.C. Gossard, S. Tarucha, Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. Phys. Rev. Lett. 113, 267601 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Seigo Tarucha
    • 1
  • Michihisa Yamamoto
    • 1
  • Akira Oiwa
    • 2
  • Byung-Soo Choi
    • 1
  • Yasuhiro Tokura
    • 3
  1. 1.Department of Applied PhysicsUniversity of TokyoTokyoJapan
  2. 2.The Institute of Scientific and Industrial ResearchOsaka UniversityMihogaoka, IbarakiJapan
  3. 3.Graduate School of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations