Superconductor-Diamond Hybrid Quantum System

  • Kouichi SembaEmail author
  • Fumiki Yoshihara
  • Jan E. S. Johansson
  • Xiaobo Zhu
  • Norikazu Mizuochi
  • William J. Munro
  • Shiro Saito
  • Kosuke Kakuyanagi
  • Yuichiro Matsuzaki
Part of the Lecture Notes in Physics book series (LNP, volume 911)


This chapter describes recent progress on research into superconducting flux qubit, NV diamond, and superconductor-diamond hybrid quantum systems. First, we describe important physical properties of superconducting macroscopic artificial atoms i.e., the tunability of the qubit energy level spacing, the coherence property, an example of strong coupling to another quantum system such as an LC harmonic oscillator, and qubit state readout through a Josephson bifurcation amplifier. We then introduce the NV center in diamond as an intriguing candidate for quantum information processing, which offers excellent multiple accessibility via visible light, microwaves and magnetic fields. Finally, we describe the superconducting flux qubit – NV centers in a diamond hybrid quantum system.


Superconducting qubit Quantum coherence Diamond Spin ensemble NV center Quantum memory Dark state Josephson bifurcation amplifier 


  1. 1.
    J. Clarke, F.K. Wilhelm, Superconducting quantum bits. Nature 453, 1031–1042 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba, H. Takayanagi, Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    I. Siddiqi, R. Vijay, F. Pierre, C.M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, M.H. Devoret, RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    K. Kakuyanagi, S. Kagei, R. Koibuchi, S. Saito, A. Lupaşcu, K. Semba, H. Nakano, Experimental analysis of the measurement strength dependence of superconducting qubit readout using a Josephson bifurcation readout method. New J. Phys. 15, 043028 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A. Lupaşcu, S. Saito, T. Picot, P.C. de Groot, C.J.P.M. Harmans, J.E. Mooij, Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3, 119–123 (2007)CrossRefGoogle Scholar
  6. 6.
    F.G. Paauw, A. Fedorov, C.J.P.M. Harmans, J.E. Mooij, Tuning the gap of a superconducting flux qubit. Phys. Rev. Lett. 102, 090501 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    X. Zhu, A. Kemp, S. Saito, K. Semba, Coherent operation of a gap-tunable flux qubit. Appl. Phys. Lett. 97, 102503 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    F. Yoshihara, Y. Nakamura, F. Yan, S. Gustavsson, J. Bylander, W.D. Oliver, J.S. Tsai, Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions. Phys. Rev. B 89, 020503(R) (2014)Google Scholar
  9. 9.
    X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W.J. Munro, Y. Tokura, M. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, K. Semba, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S. Saito, X. Zhu, R. Amsüss, Y. Matsuzaki, K. Kakuyanagi, T. Shimo-Oka, N. Mizuochi, K. Nemoto, W.J. Munro, K. Semba, Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states. Phys. Rev. Lett. 111, 107008 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    X. Zhu, Y. Matsuzaki, R. Amsüss, K. Kakuyanagi, T. Shimo-Oka, N. Mizuochi, K. Nemoto, W.J. Munro, K. Semba, S. Saito, Observation of dark states in a superconductor diamond quantum hybrid system. Nat. Commun. 5, 3424 (2014)ADSGoogle Scholar
  12. 12.
    J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. van der Wal, S. Lloyd, Josephson persistent-current qubit. Science 285, 1036–1039 (1999)CrossRefGoogle Scholar
  13. 13.
    T.P. Orlando, J.E. Mooij, L. Tian, C.H. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D.G. Cory, Y. Nakamura, J.S. Tsai, W.D. Oliver, Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011)CrossRefGoogle Scholar
  15. 15.
    M.W. Dohert, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C.L. Hollenberg, The nitrogen-vacancy colour centre in diamond. Phys. Rep.-Rev. Sect. Phys. Lett. 528, 1–45 (2013)Google Scholar
  16. 16.
    E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    N. Mizuochi, P. Neumann, F. Rempp, J. Beck, V. Jacques, P. Siyushev, K. Nakamura, D. Twitchen, H. Watanabe, S. Yamasaki, F. Jelezko, J. Wrachtrup, Coherence of single spins coupled to a nuclear spin bath of varying density. Phys. Rev. B 80, 041201(R) (2009)Google Scholar
  18. 18.
    G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, F. Jelezko, J. Wrachtrup, Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    L.M. Pham, N. Bar-Gill, C. Belthangady, D. Le Sage, P. Cappellaro, M.D. Lukin, A. Yacoby, R.L. Walsworth, Enhanced solid-state multispin metrology using dynamical decoupling. Phys. Rev. 86, 045214 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, Electrically driven single photon source at room temperature in diamond. Nat. Photonics 6, 299–303 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    N. Bar-Gill, L.M. Pham, A. Jarmola, D. Budker, R.L. Walsworth, Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    P.C. Maurer, G. Kucsko, C. Latta, L. Jiang, N.Y. Yao, S.D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D.J. Twitchen, J.I. Cirac, M.D. Lukin, Room-temperature quantum bit memory exceeding one second. Science 336, 1283 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    F. Dolde, H. Fedder, M.W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Electric field sensing using single diamond spins. Nat. Phys. 7, 459 (2011)CrossRefGoogle Scholar
  25. 25.
    B. Grotz, M.V. Hauf, M. Dankerl, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Charge state manipulation of qubits in diamond. Nat. Commun. 3, 729 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Doi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, H. Morishita, T. Tashima, S. Miwa, S. Yamasaki, J. Wrachtrup, Y. Suzuki, N. Mizuochi, Deterministic electrical charge state initialization of single nitrogen-vacancy center in diamond. Phys. Rev. X 4, 01107 (2014)Google Scholar
  27. 27.
    D. Marcos, M. Wubs, J.M. Taylor, R. Aguado, M.D. Lukin, A.S. Sørensen, Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett. 105, 210501 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Kubo, I. Diniz, A. Dewes, V. Jacques, A. Dréau, J.-F. Roch, A. Auffeves, D. Vion, D. Esteve, P. Bertet, Storage and retrieval of a microwave field in a spin ensemble. Phys. Rev. A 85, 012333 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, P. Bergonzo, D. Esteve, Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    I. Diniz, S. Portolan, R. Ferreira, J.M. Gérard, P. Bertet, A. Auffeves, Strongly coupling a cavity to inhomogeneous ensembles of emitters: potential for long-lived solid-state quantum memories. Phys. Rev. A 84, 063810 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    R. Houdré, R.P. Stanley, M. Ilegems, Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: resolution of a homogeneous linewidth in an inhomogeneously broadened system. Phys. Rev. A 53, 2711 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    A. Imamoğlu, Cavity qed based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    J.H. Wesenberg, A. Ardavan, G.A.D. Briggs, J.J.L. Morton, R.J. Schoelkopf, D.I. Schuster, K. Mølmer, Quantum computing with an electron spin ensemble. Phys. Rev. Lett. 103, 070502 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Z.-L. Xiang, S. Ashhab, J.Q. You, F. Nori, Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Kouichi Semba
    • 1
    Email author
  • Fumiki Yoshihara
    • 1
  • Jan E. S. Johansson
    • 2
  • Xiaobo Zhu
    • 3
  • Norikazu Mizuochi
    • 4
  • William J. Munro
    • 5
  • Shiro Saito
    • 5
  • Kosuke Kakuyanagi
    • 5
  • Yuichiro Matsuzaki
    • 5
  1. 1.National Institute of Information and Communication TechnologyKoganeiJapan
  2. 2.Faculty of Engineering and ScienceUniversity of AgderKristiansandNorway
  3. 3.Chinese Academy of SciencesThe Institute of PhysicsBeijingChina
  4. 4.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  5. 5.NTT Basic Research LaboratoriesAtsugiJapan

Personalised recommendations