Advertisement

Microwave Photonics on a Chip: Superconducting Circuits as Artificial Atoms for Quantum Information Processing

Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

Superconducting circuits using Josephson junctions, behaving as nonlinear inductors, can act as artificial atoms displaying macroscopic quantum coherence. Therefore, atomic physics and quantum optics experiments on a chip can be performed using these artificial atoms. This chapter presents a brief overview of this exciting and fast-growing field. We discuss the analogies with atomic physics and quantum optics occurring in natural atoms, and also describe the differences with natural atoms. We also summarize some current trends in this interdisciplinary field of microwave photonics. These circuits provide an unprecedented level of control over quantum states, and this can be useful for future quantum information processors.

Keywords

Superconducting qubits 

Notes

Acknowledgments

We acknowledge partial support from the RIKEN iTHES Project, the MEXT Kakenhi on Quantum Cybernetics, a Grant-in-Aid for Scientific Research (A), and especially the JST “Funding Program for Innovative R&D on S&T” (FIRST).

References

  1. 1.
    Y. Makhlin, G. Schön, A. Shnirman, Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 7, 357–400 (2001)ADSMATHCrossRefGoogle Scholar
  2. 2.
    J.Q. You, F. Nori, Superconducting circuits and quantum information. Phys. Today 58(11), 42–47 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Clarke, F.K. Wilhelm, Superconducting quantum bits. Nature 453, 1031–1042 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    R.J. Schoelkopf, S.M. Girvin, Wiring up quantum systems. Nature 451, 664–669 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    C.H. van der Wal et al., Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Yu, S.Y. Han, X. Chu, S.I. Chu, Z. Wang, Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889–892 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Martinis, S. Nam, J. Aumentado, C. Urbina, Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    D. Vion et al., Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.Q. You, X. Hu, S. Ashhab, F. Nori, Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M. Steffen et al., High-coherence hybrid superconducting qubit. Phys. Rev. Lett. 105, 100502 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J. Koch et al., Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J.Q. You, F. Nori, Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    I. Chiorescu et al., Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    A. Wallraff et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A. Fragner et al., Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift. Science 28, 1357–1360 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M.H. Devoret, S. Girvin, R. Schoelkopf, Circuit-QED: How strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann. Phys. (Leipzig) 16(767–779) (2007)Google Scholar
  19. 19.
    E.K. Irish, J. Gea-Banacloche, I. Martin, K.C. Schwab, Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator. Phys. Rev. B 72, 195410 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    D. Zueco, G.M. Reuther, S. Kohler, P. Hänggi, Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation. Phys. Rev. A 80, 033846 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ashhab, F. Nori, Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    P. Nataf, C. Ciuti, Vacuum degeneracy of a circuit QED system in the ultrastrong coupling regime. Phys. Rev. Lett. 104, 023601 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    T. Niemczyk et al., Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010)CrossRefGoogle Scholar
  24. 24.
    P. Forn-Diaz et al., Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. Phys. Rev. Lett. 105, 237001 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Y.X. Liu, J.Q. You, L.F. Wei, C.P. Sun, F. Nori, Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    F. Deppe et al., Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED. Nat. Phys. 4, 686–691 (2008)CrossRefGoogle Scholar
  27. 27.
    P.C. de Groot et al., Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits. Nat. Phys. 6, 763–766 (2010)CrossRefGoogle Scholar
  28. 28.
    S.E. Harris, Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997)CrossRefGoogle Scholar
  29. 29.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)MATHCrossRefGoogle Scholar
  30. 30.
    J.Q. You, Y.X. Liu, C.P. Sun, F. Nori, Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit. Phys. Rev. B 75, 104516 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    K.V.R.M. Murali, Z. Dutton, W.D. Oliver, D.S. Crankshaw, T.P. Orlando, Probing decoherence with electromagnetically induced transparency in superconductive quantum circuits. Phys. Rev. Lett. 93, 087003 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Z. Dutton, K.V.R.M. Murali, W.D. Oliver, T.P. Orlando, Electromagnetically induced transparency in superconducting quantum circuits: Effects of decoherence, tunneling, and multilevel crosstalk. Phys. Rev. B 73, 104516 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    H. Ian, Y.X. Liu, F. Nori, Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 81, 063823 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    M.A. Sillanpää et al., Autler-Townes effect in a superconducting three-level system. Phys. Rev. Lett. 103, 193601 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    A.A. Abdumalikov Jr. et al., Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett. 104, 193601 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    D.A. Rodrigues, J. Imbers, A.D. Armour, Quantum dynamics of a resonator driven by a superconducting single-electron transistor: A solid-state analogue of the micromaser. Phys. Rev. Lett. 98, 67204 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    J. Hauss, A. Fedorov, C. Hutter, A. Shnirman, G. Schön, Single-qubit lasing and cooling at the Rabi frequency. Phys. Rev. Lett. 100, 037003 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Single-artificial-atom lasing using a voltage-biased superconducting charge qubit. New J. Phys. 11, 023030 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    O. Astafiev et al., Single artificial-atom lasing. Nature 449, 588–590 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    M. Grajcar et al., Sisyphus cooling and amplification by a superconducting qubit. Nature Phys. 4, 612–616 (2008)CrossRefGoogle Scholar
  41. 41.
    C.J. Foot, Atomic Physics (Oxford University Press, Oxford, 2004)MATHGoogle Scholar
  42. 42.
    S.O. Valenzuela et al., Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    J.Q. You, Y.X. Liu, N. Nori, Simultaneous cooling of an artificial atom and its neighboring quantum system. Phys. Rev. Lett. 100, 047001 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nanodevice motion at microwave frequencies. Nature 421, 496 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    I. Martin, A. Shnirman, L. Tian, P. Zoller, Ground-state cooling of mechanical resonators. Phys. Rev. B 69, 125339 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    P. Zhang, Y.D. Wang, C.P. Sun, Cooling mechanism for a nonmechanical resonator by periodic coupling to a Cooper pair box. Phys. Rev. Lett. 95, 097204 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    M. Grajcar, S. Ashhab, J.R. Johansson, F. Nori, Lower limit on the achievable temperature in resonator-based sideband cooling. Phys. Rev. B 78, 035406 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    A. Naik et al., Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    T. Rocheleau et al., Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    A.D. O’Connell et al., Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    M.A. Sillanpää, J.I. Park, R.W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    A.A. Houck et al., Generating single microwave photons in a circuit. Nature 449, 328–331 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    M. Hofheinz et al., Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    M. Hofheinz et al., Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    C.K. Law, J.H. Eberly, Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055–1058 (1996)ADSCrossRefGoogle Scholar
  57. 57.
    Y.X. Liu, L.F. Wei, F. Nori, Generation of nonclassical photon states using a superconducting qubit in a microcavity. Europhys. Lett. 67, 941–947 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    H. Wang et al., Measurement of the decay of Fock states in a superconducting quantum circuit. Phys. Rev. Lett. 101, 240401 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    H. Wang et al., Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    Y.X. Liu, L.F. Wei, F. Nori, Tomographic measurements on superconducting qubit states. Phys. Rev. B 72, 014547 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    M. Steffen et al., State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    N. Katz et al., Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    M. Steffen et al., Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    S. Filipp et al., Two-qubit state tomography using a joint dispersive readout. Phys. Rev. Lett. 102, 200402 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    M. Neeley et al., Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008)CrossRefGoogle Scholar
  66. 66.
    R.C. Bialczak et al., Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409–413 (2010)CrossRefGoogle Scholar
  67. 67.
    J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    L.F. Wei, J.R. Johansson, L.X. Cen, S. Ashhab, F. Nori, Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 100, 113601 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    A.A. Rangelov et al., Stark-shift-chirped rapid-adiabatic-passage technique among three states. Phys. Rev. A 72, 053403 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    B.R. Johnson et al., Quantum non-demolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663 (2010)CrossRefGoogle Scholar
  71. 71.
    S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Strückelberg interferometry. Phys. Rep. 492, 1–30 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    J.T. Shen, S. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    O. Astafiev et al., Resonance fluorescence of a single artificial atom. Science 327, 840–843 (2010)ADSCrossRefGoogle Scholar
  76. 76.
    A. Wallraff et al., Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)ADSCrossRefGoogle Scholar
  77. 77.
    A. Lupascu et al., Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3, 119–125 (2007)CrossRefGoogle Scholar
  78. 78.
    N. Boulant et al., Quantum nondemolition readout using a Josephson bifurcation amplifier. Phys. Rev. B 76, 014525 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    I. Siddiqi et al., RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    T. Picot, R. Schouten, C.J.P.M. Harmans, J.E. Mooij, Quantum nondemolition measurement of a superconducting qubit in the weakly projective regime. Phys. Rev. Lett. 105, 040506 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    E. Il’ichev et al., Continuous monitoring of Rabi oscillations in a Josephson flux qubit. Phys. Rev. Lett. 91, 097906 (2003)ADSCrossRefGoogle Scholar
  82. 82.
    A.M. Zagoskin, E. Il’ichev, M.W. McCutcheon, J.F. Young, F. Nori, Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101, 253602 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)ADSMathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    L.B. Ioffe et al., Topologically protected quantum bits using Josephson junction arrays. Nature 415, 503–506 (2002)CrossRefGoogle Scholar
  85. 85.
    S. Gladchenko et al., Superconducting nanocircuits for topologically protected qubits. Nat. Phys. 5, 48–53 (2009)CrossRefGoogle Scholar
  86. 86.
    J.Q. You, X.F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B 81, 014505 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    A. Kitaev, Anyons in an exactly solved model and beyond. Ann. Phys. (N.Y.) 321, 2–111 (2006)ADSMathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    P.D. Nation, M.P. Blencowe, A.J. Rimberg, E. Buks, Analogue Hawking radiation in a dc-SQUID array transmission line. Phys. Rev. Lett. 103, 087004 (2009)ADSCrossRefGoogle Scholar
  89. 89.
    J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000)ADSCrossRefGoogle Scholar
  90. 90.
    P. Bertet et al., Dephasing of a superconducting qubit induced by photon noise. Phys. Rev. Lett. 95, 257002 (2005)ADSCrossRefGoogle Scholar
  91. 91.
    R.W. Simmonds et al., Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004)ADSCrossRefGoogle Scholar
  92. 92.
    M. Genovese, Research on hidden variable theories: A review of recent progresses. Phys. Rep. 413, 319–396 (2005)ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    L.F. Wei, Y.X. Liu, F. Nori, Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations. Phys. Rev. B 72, 104516 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    A.G. Kofman, A.N. Korotkov, Analysis of Bell inequality violation in superconducting phase qubits. Phys. Rev. A 77, 104502 (2008)CrossRefGoogle Scholar
  95. 95.
    M. Ansmann et al., Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009)ADSCrossRefGoogle Scholar
  96. 96.
    M. Neeley et al., Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)ADSCrossRefGoogle Scholar
  97. 97.
    D. DiCarlo et al., Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)ADSCrossRefGoogle Scholar
  98. 98.
    A.J. Leggett, A. Garg, Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985)ADSMathSciNetCrossRefGoogle Scholar
  99. 99.
    A. Palacios-Laloy et al., Experimental violation of a Bell’s inequality in time with weak measurement. Nat. Phys. 6, 442–447 (2010)CrossRefGoogle Scholar
  100. 100.
    L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits. Phys. Rev. B 81, 174513 (2010)ADSCrossRefGoogle Scholar
  101. 101.
    J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)ADSCrossRefGoogle Scholar
  102. 102.
    I. Buluta, F. Nori, Quantum simulators. Science 326, 108 (2009)ADSCrossRefGoogle Scholar
  103. 103.
    I. Buluta, S. Ashhab, F. Nori, Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    F. Nori, Atomic physics with a circuit. Nat. Phys. 4, 589 (2008)CrossRefGoogle Scholar
  105. 105.
    F. Nori, Quantum football. Science 325, 689 (2009)CrossRefGoogle Scholar
  106. 106.
    S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry. Phys. Rep. 492, 1 (2010)ADSCrossRefGoogle Scholar
  107. 107.
    P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys. 84, 1–24 (2012)ADSCrossRefGoogle Scholar
  108. 108.
    I. Georgescu, F. Nori, Quantum technologies: An old new story. Phys. World 25, 16–17 (2012)CrossRefGoogle Scholar
  109. 109.
    A.G. Kofman, S. Ashhab, F. Nori, Weak pre- and post-selected measurements. Phys. Rep. 520, 43–133 (2012)ADSMathSciNetCrossRefGoogle Scholar
  110. 110.
    Z.-L. Xiang, S. Ashhab, J.Q. You, F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)ADSCrossRefGoogle Scholar
  111. 111.
    C. Emary, N. Lambert, F. Nori, Leggett-Garg inequalities. Rep. Prog. Phys. 77, 016001 (2014)ADSMathSciNetCrossRefGoogle Scholar
  112. 112.
    J. Ma, X. Wang, C.P. Sun, F. Nori, Quantum spin squeezing. Phys. Rep. 509, 89 (2011)ADSMathSciNetCrossRefGoogle Scholar
  113. 113.
    I. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)ADSCrossRefGoogle Scholar
  114. 114.
    C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.CEMS, RIKENSaitama 351-0198Japan
  2. 2.Physics DepartmentThe University of MichiganAnn ArborUSA
  3. 3.Beijing Computational Science Research CenterBeijingChina

Personalised recommendations