Optical Hybrid Quantum Information Processing

Part of the Lecture Notes in Physics book series (LNP, volume 911)


Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.


Qubit Continuous variable Quantum teleportation Quantum computing 


  1. 1.
    P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Rev. Mod. Phys. 79, 135 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, Rev. Mod. Phys. 84, 777 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005)ADSCrossRefMATHGoogle Scholar
  4. 4.
    P. van Loock, Laser Photonics Rev. 5, 167 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Furusawa, P. van Loock, Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Wiley, New York, 2011)CrossRefGoogle Scholar
  6. 6.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information Processing (Cambridge University Press, Cambridge, 2000)Google Scholar
  7. 7.
    S. Lloyd, S.L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    L. Vaidman, Phys. Rev. A 49, 1473 (1994)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    S.L. Braunstein, H.J. Kimble, Nature 394, 840 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Science 282, 706 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    N.C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T.C. Ralph, M.A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Nature 434, 169 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, Nature 445, 65 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Tokunaga, S. Kuwashiro, T. Yamamoto, M. Koashi, N. Imoto, Phys. Rev. Lett. 100, 210501 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    P. van Loock, C. Weedbrook, M. Gu, Phys. Rev. A 76, 032321 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    M. Yukawa, R. Ukai, P. van Loock, A. Furusawa, Phys. Rev. A 78, 012301 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    R. Ukai, N. Iwata, Y. Shimokawa, S.C. Armstrong, A. Politi, J. Yoshikawa, P. van Loock, A. Furusawa, Phys. Rev. Lett. 106, 240504 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, A. Furusawa, Phys. Rev. Lett. 107, 250501 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    S. Yokoyama, R. Ukai, S.C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N.C. Menicucci, A. Furusawa, Nat. Photon. 7, 982 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    D. Gottesman, I.L. Chuang, Nature 402, 390 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    S.D. Bartlett, W.J. Munro, Phys. Rev. Lett. 90, 117901 (2003)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U.L. Andersen, A. Furusawa, Phys. Rev. A 76, 060301(R) (2007)Google Scholar
  27. 27.
    J. Yoshikawa, Y. Miwa, A. Huck, U.L. Andersen, P. van Loock, A. Furusawa, Phys. Rev. Lett. 101, 250501 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Gottesman, A. Kitaev, J. Preskill, Phys. Rev. A 64, 012310 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    P. Marek, R. Filip, A. Furusawa, Phys. Rev. A 84, 053802 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    E. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    R. Okamoto, J.L. O’Brien, H.F. Hofmann, S. Takeuchi, Proc. Natl. Acad. Sci. USA 108, 11067 (2011)Google Scholar
  32. 32.
    R.E.S. Polkinghorne, T.C. Ralph, Phys. Rev. Lett. 83, 2095 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    T. Ide, H.F. Hofmann, T. Kobayashi, A. Furusawa, Phys. Rev. A 65, 012313 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    E.S. Polzik, J. Carri, H.J. Kimble, Appl. Phys. B 55, 279 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, Opt. Express 15, 4321 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Phys. Rev. Lett. 104, 251102 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    N. Takei, N. Lee, D. Moriyama, J.S. Neergaard-Nielsen, A. Furusawa, Phys. Rev. A 74, 060101(R) (2006)Google Scholar
  38. 38.
    N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, A. Furusawa, Science 332, 330 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, A. Furusawa, Phys. Rev. A 87, 043803 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    S. Takeda, T. Mizuta, M. Fuwa, P. van Loock, A. Furusawa, Nature 500, 315 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    S. Takeda, T. Mizuta, M. Fuwa, H. Yonezawa, P. van Loock, A. Furusawa, Phys. Rev. A 88, 042327 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    S. Takeda, M. Fuwa, P. van Loock, A. Furusawa, Phys. Rev. Lett. 114, 100501 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    M. Gu, C. Weedbrook, N.C. Menicucci, T.C. Ralph, P. van Loock, Phys. Rev. A 79, 062318 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    M. Yukawa, K. Miyata, T. Mizuta, H. Yonezawa, P. Marek, R. Filip, A. Furusawa, Opt. Express 21, 5529 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    M. Yukawa, K. Miyata, H. Yonezawa, P. Marek, R. Filip, A. Furusawa, Phys. Rev. A 88, 053816 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    J. Yoshikawa, K. Makino, S. Kurata, P. van Loock, A. Furusawa, Phys. Rev. X 3, 041028 (2013)Google Scholar
  47. 47.
    S. Sefi, V. Vaibhav, P. van Loock, Phys. Rev. A 88, 012303 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P.Marek, R. Filip, P. van Loock, A. Furusawa, Phys. Rev. Lett. 113, 013601 (2014)Google Scholar
  49. 49.
    N.C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Science 320, 646 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Applied Physics, School of EngineeringThe University of TokyoTokyoJapan
  2. 2.Department of Photo-Molecular Science, Institute for Molecular ScienceNational Institutes of Natural SciencesOkazakiJapan

Personalised recommendations