Quantum Communication for the Ultimate Capacity and Security

  • Masahide Sasaki
  • Mikio Fujiwara
  • Masahiro Takeoka
Part of the Lecture Notes in Physics book series (LNP, volume 911)


Quantum info-communication technologies (Q-ICT) will be able to realize quantum communication which attains higher capacity than that of conventional optical communications, and the unconditionally secure communication, known as quantum key distribution (QKD), that cannot be broken by any future technologies. In this article we first review a brief history of Q-ICT, and introduce basic notions and results so far. We then present our recent results on these two technologies, addressing current limitations of the known schemes, and finally discuss future perspectives, especially a challenge to merge the merits of the two.


Quantum communication Quantum receiver Quantum key distribution Physical layer cryptography 



The results on QKD presented here were obtained by the collaboration with NEC Corporation under the NICT Commissioned Research. This work was partly supported by the Quantum Information Processing Project in the Program for World-Leading Innovation Research and Development on Science and Technology (FIRST) and by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (Ministry of Education, Science, and Technology) (No. 2010-0018295).


  1. 1.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (Part I); 623–656 (Part II) (1948)Google Scholar
  2. 2.
    D. Gabor, Communication theory and physics. Phis. Mag. 44, 1161 (1950)CrossRefGoogle Scholar
  3. 3.
    C.W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976)MATHGoogle Scholar
  4. 4.
    A.S. Holevo, Some estimates for information quantity transmitted by quantum communication channels. Probl. Peredachi Inf. 9, 3 (1973)MATHMathSciNetGoogle Scholar
  5. 5.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore (1984), pp. 175–179Google Scholar
  6. 6.
    P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, W.K. Wootters, Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869 (1996)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A.S. Holevo, The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory IT-44, 269–273 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Schumacher, M. Westmoreland, Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    M. Sasaki, K. Kato, M. Izutsu, O. Hirota, A demonstration of superadditivity in the classical capacity of a quantum channel. Phys. Lett. A 236, 1 (1997)ADSMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Sasaki, K. Kato, M. Izutsu, O. Hirota, Quantum channels showing superadditivity in classical capacity. Phys. Rev. A 58, 146 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    M. Fujiwara, M. Takeoka, J. Mizuno, M. Sasaki, Exceeding classical capacity limit in quantum optical channel. Phys. Rev. Lett. 90, 167906 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    M. Takeoka, M. Fujiwara, J. Mizuno, M. Sasaki, Implementation of generalized quantum measurements: superadditive quantum coding, accessible information extraction, and classical capacity limit. Phys. Rev. A 69, 052329 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J.H. Shapiro, H.P. Yuen, Classical capacity of the lossy Bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J.P. Gordon, Noise at optical frequencies; information theory, in Quantum Electronics and Coherent Light, ed. by P.A. Miles. Proceedings of the International School of Physics “Enrico Fermi”, Course XXXI (Academic, New York, 1964), pp. 156–181Google Scholar
  15. 15.
    C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, H. Yeh, Current status of the DARPA quantum network, in Quantum Information and Computation III, ed. by E.J. Donkor, A.R. Pirich, H.E. Brandt. Proceedings of SPIE, vol. 5815 (2005), pp. 138–149. arXiv:quant-ph/0503058v2Google Scholar
  16. 16.
    M. Peev et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Sasaki et al.: Field test of quantum key distribution in the Tokyo QKD Network. Opt. Exp. 19, 10387 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    ID Quantique,; MagiQ Technologies, Inc.,; QuintessenceLabs Pty Ltd,
  19. 19.
    A. Waseda, M. Sasaki, M. Takeoka, M. Fujiwara, M. Toyoshima, A. Assalini, Numerical evaluation of PPM for deep-space links. J. Opt. Commun. Netw. 3, 514 (2011)CrossRefGoogle Scholar
  20. 20.
    R.S. Kennedy, Near-optimum receiver for the binary coherent state quantum channel. Res. Lab Electron. MIT Q. Progress Rep. 108, 219 (1973)Google Scholar
  21. 21.
    S. Dolinar, An optimum receiver for the binary coherent state quantum channel. Res. Lab Electron. MIT Q. Progress Rep. 111, 115 (1973)Google Scholar
  22. 22.
    A.S. Holevo, Quantum-probabilistic analysis of counting statistics with an application to the “Dolinar receiver”. Izv. Vuz. Mat. 26, 3 (1982) [Sov. Math. Dolk. 26, 3 (1982)]Google Scholar
  23. 23.
    M. Takeoka, M. Sasaki, P. van Loock, N. Lütkenhaus, Implementation of projective measurements with linear optics and continuous photon counting. Phys. Rev. A 71, 022318 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    M. Takeoka, M. Sasaki, N. Lütkenhaus, Binary projective measurement via linear optics and photon counting. Phys. Rev. Lett. 97, 040502 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    M. Sasaki, O. Hirota, Optimum decision scheme with a unitary control process for binary quantum-state signals. Phys. Rev. A 54, 2728–2736, (1996)ADSCrossRefGoogle Scholar
  26. 26.
    R.L. Cook, P.J. Martin, J.M. Geremia, Optical coherent state discrimination using a closed-loop quantum measurement. Nature 446, 774–777 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    V. Vilnrotter, E. Rodemich, A generalization of the near-optimum binary coherent state receiver concept. IEEE Trans. Inf. Theory 30, 446 (1984)MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Takeoka, M. Sasaki, Discrimination of the binary coherent signal: Gaussian-operation limit and simple nongaussian near-optimal receivers. Phys. Rev. A 78, 022320 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    C. Wittmann, M. Takeoka, K.N. Cassemiro, M. Sasaki, G. Leuchs, U.L. Andersen, Demonstration of nearoptimal discrimination of optical coherent states. Phys. Rev. Lett. 101, 210501 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, M. Sasaki, Quantum receiver beyond the standard quantum limit of coherent optical communication. Phys. Rev. Lett. 106, 250503 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, M. Sasaki, Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor. Opt. Express 18, 8107 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    R.S. Bondurant, Near-quantum optimum receivers for the phase-quadrature coherent-state channel. Opt. Lett. 18, 1896 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    F.E. Becerra, J. Fan, Baumgartner, S.V.G. Polyakov, J. Goldhar, J.T. Kosloski, A. Migdall, M-ary-state phase-shift-keying discrimination below the homodyne limit. Phys. Rev. A 84, 062324 (2011)Google Scholar
  34. 34.
    S. Izumi, M. Takeoka, M. Fujiwara, N. Dalla Pozza, A. Assalini, K. Ema, M. Sasaki, Displacement receiver for phase-shift-keyed coherent states. Phys. Rev. A 86, 042328 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    F.E. Becerra, J. Fan, G. Baumgartner, J. Goldhar, J.T. Kosloski, A. Migdall, Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination. Nat. Photonics 7, 147 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    S. Izumi, A. Takeoka, K. Ema, M. Sasaki, Quantum receivers with squeezing and photon-number-resolving detectors for M-ary coherent state discrimination. Phys. Rev. A 87, 042328 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    C.R. Müller, M.A. Usuga, C. Wittmann, M. Takeoka, Ch. Marquardt, U.L. Andersen, G. Leuchs, Quadrature phase shift keying coherent state discrimination via a hybrid receiver. New J. Phys. 14, 083009 (2012)CrossRefGoogle Scholar
  38. 38.
    S. Guha, J.L. Habif, M. Takeoka, Approaching Helstrom limits to optical pulse-position demodulation using single photon detection and optical feedback. J. Mod. Opt. 58, 257 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    J. Chen, J.L. Habif, Z. Dutton, R. Lazarus, S. Guha, Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver. Nat. Photonics 6, 374 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    D. Ivanovic, How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257 (1987); D. Dieks, Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303 (1988); A. Peres, How to differentiate between non-otrhogonal states. Phys. Lett. A 128, 19 (1988)Google Scholar
  41. 41.
    C. Wittmann, U.L. Andersen, M. Takeoka, D. Sych, G. Leuchs, Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector. Phys. Rev. Lett. 104, 100505 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    C. Wittmann, U.L. Andersen, M. Takeoka, D. Sych, G. Leuchs, Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector. Phys. Rev. A 82, 062338 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    F.E. Becerra, J. Fan, A. Migdall, Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states. Nat. Commun. 4, 2028 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    M. Takeoka, S. Guha, Capacity of optical communication in loss and noise with general quantum Gaussian receivers. Phys. Rev. A 89, 042309 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    K. Yoshino, M. Fujiwara, A. Tanaka, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, A. Tajima, High-speed wavelength-division multiplexing quantum key distribution system. Opt. Lett. 37, 223 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    A. Tanaka, M. Fujiwara, K. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, A. Tajima, High-speed quantum key distribution system for 1-Mbps real-time key generation. IEEE J. Quant. Electron. 48, 542 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Nambu, K. Yoshino, A. Tomita, Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit. J. Mod. Opt. 55, 1953 (2008)CrossRefGoogle Scholar
  48. 48.
    K. Yoshino, T. Ochi, M. Fujiwara, M. Sasaki, A. Tajima, Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days. Opt. Express 21, 31395 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    J.S. Neergaard-Nielsen, Y. Eto, C.-W. Lee, H. Jeong, M. Sasaki, Quantum tele-amplification with a continuous-variable superposition state. Nat. Photonics 7, 439 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    A.D. Wyner, The wire-tap channel. Bell Syst. Tech. J., 54, 1355 (1975)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    M. Hayashi, Exponential decreasing rate of leaked information in universal random privacy amplification. IEEE Trans. Inf. Theory IT-57, 3989, (2011)CrossRefGoogle Scholar
  52. 52.
    T.-S. Han, H. Endo, M. Sasaki, Reliability and security functions of the wiretap channel under cost constraint. arXiv:1307.0608 [cs.IT]Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Masahide Sasaki
    • 1
  • Mikio Fujiwara
    • 1
  • Masahiro Takeoka
    • 1
  1. 1.Quantum ICT LaboratoryNational Institute of Information and Communications TechnologyKoganeiJapan

Personalised recommendations