Analysis of an Atom-Optical Architecture for Quantum Computation

  • Simon J. Devitt
  • Ashley M. Stephens
  • William J. Munro
  • Kae Nemoto
Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

Quantum technology based on photons has emerged as one of the most promising platforms for quantum information processing, having already been used in proof-of-principle demonstrations of quantum communication and quantum computation. However, the scalability of this technology depends on the successful integration of experimentally feasible devices in an architecture that tolerates realistic errors and imperfections. Here, we analyse an atom-optical architecture for quantum computation designed to meet the requirements of scalability. The architecture is based on a modular atom-cavity device that provides an effective photon-photon interaction, allowing for the rapid, deterministic preparation of a large class of entangled states. We begin our analysis at the physical level, where we outline the experimental cavity quantum electrodynamics requirements of the basic device. Then, we describe how a scalable network of these devices can be used to prepare a three-dimensional topological cluster state, sufficient for universal fault-tolerant quantum computation. We conclude at the application level, where we estimate the system-level requirements of the architecture executing an algorithm compiled for compatibility with the topological cluster state.

Keywords

Quantum computing architecture Atom optics Topological cluster state computation Resources estimation Shor’s algotithm 

Notes

Acknowledgements

This work was supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), a Scientific Research of Specially Promoted Research (grant no.18001002) by MEXT and a Quantum Cybernetics grant.

References

  1. 1.
    ARDA, Quantum information science and technology roadmap project (2004), http://qist.lanl.gov
  2. 2.
    R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. White, J. Mutus, A. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O‘Malley, P. Roushan, A. Vainsencher, J. Wenner, A. Korotkov, A. Cleland, J. Martinis, Logic gates at the surface code threshold: superconducting qubits poised for fault-tolerant quantum computing. Nature 508, 500–503 (2014)Google Scholar
  3. 3.
    S. Barrett, T. Stace, Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200,502 (2010)CrossRefGoogle Scholar
  4. 4.
    J. Benhelm, G. Kirchmair, C. Roos, R. Blatt, Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463 (2008)CrossRefGoogle Scholar
  5. 5.
    C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. Wooters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    B.B. Blinov, D.L. Moehring, L.M. Duan, C. Monroe, Observation of entanglement between a single trapped atom and a single photon. Nature 428(6979), 153–157 (2004). http://dx.doi.org/10.1038/nature02377
  7. 7.
    H. Bombin, M. Martin-Delgato, Topological quantum distillation. Phys. Rev. Lett. 97, 180,501 (2006)CrossRefGoogle Scholar
  8. 8.
    H. Bombin, M. Martin-Delgato, Topological computation without braiding. Phys. Rev. Lett. 98, 160,502 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Bravyi, A. Kitaev, Quantum codes on a lattice with boundary (1998). quant-ph/9811052Google Scholar
  10. 10.
    S. Bravyi, A. Kitaev, Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A 71, 022,316 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    D. Cory, A. Fahmy, T. Havel, Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. 94, 1634–1639 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    E. Dennis, A. Kitaev, A. Landahl, J. Preskill, Topological quantum memory. J. Math. Phys. 43, 4452 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    D. Deutsch, Quantum computational networks. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 425, 73 (1989)Google Scholar
  15. 15.
    S. Devitt, K. Nemoto, Programming a topological quantum computer, in 2012 IEEE 21st Asian Test Symposium (ATS), Niigatta (2012), pp. 55–60Google Scholar
  16. 16.
    S. Devitt, A. Greentree, R. Ionicioiu, J. O’Brien, W. Munro, L. Hollenberg, The photonic module: an on-demand resource for photonic entanglement. Phys. Rev. A 76, 052312 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    S. Devitt, A. Fowler, A. Stephens, A. Greentree, L. Hollenberg, W. Munro, K. Nemoto, Architectural design for a topological cluster state quantum computer. New. J. Phys. 11, 083,032 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Devitt, A. Stephens, W. Munro, K. Nemoto, Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation. New J. Phys. 13, 095,001 (2011)CrossRefGoogle Scholar
  19. 19.
    S. Devitt, W. Munro, K. Nemoto, Quantum error correction for beginners. Rep. Prog. Phys. 76, 076,001 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Devitt, A. Stephens, W. Munro, K. Nemoto, Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nat. Commun. 4, 2524 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    D. DiVincenzo, Topics in quantum computers. in Mesoscopic Electron Transport, ed. by L. Kowenhoven, G. Schon, L. Sohn. NATO ASI Series E (Kluwer Academic, Dordrecht, 1997)Google Scholar
  22. 22.
    D. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)CrossRefMATHGoogle Scholar
  23. 23.
    J. Dowling, G. Milburn, Quantum technology: the second quantum revolution (2002). quant-ph/0206091Google Scholar
  24. 24.
    G. Duclos-Cianci, D. Poulin, Fault-tolerant renormalization group decoded for Abelian topological codes. Quantum Inf. Comput. 14, 0721 (2014)MathSciNetGoogle Scholar
  25. 25.
    J. Edmonds, Paths, trees, and flowers. Can. J. Math. 17, 449 (1965)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    A. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Fowler, Low overhead surface code logical H. Quantum Inf. Comput. 12, 970 (2012)MathSciNetMATHGoogle Scholar
  29. 29.
    A. Fowler, S. Devitt, A bridge to lower overhead quantum computation (2012). arXiv:1209.0510Google Scholar
  30. 30.
    A. Fowler, K. Goyal, Topological cluster state quantum computing. Quantum Inf. Comput. 9, 721 (2009)MathSciNetMATHGoogle Scholar
  31. 31.
    A. Fowler, S. Devitt, L. Hollenberg, Implementation of Shor’s algorithm on a linear nearest neighbour qubit array. Quantum Inf. Comput. 4, 237–251 (2004)MathSciNetMATHGoogle Scholar
  32. 32.
    A. Fowler, A. Stephens, P. Groszkowski, High threshold universal quantum computation on the surface code. Phys. Rev. A 80, 052,312 (2009)CrossRefGoogle Scholar
  33. 33.
    A. Fowler, M. Mariantoni, J. Martinis, A. Cleland, Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032,324 (2012)Google Scholar
  34. 34.
    A. Fowler, S. Devitt, C. Jones, Surface code implementation of block code state distillation. Sci. Rep. 3, 1939 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    M. Freedman, D.A. Meyer, Projective plane and planar quantum codes. Found. Comput. Math. 1, 325 (2001)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Series in Synergetics (Springer, Berlin/Heidelberg, 2004)Google Scholar
  37. 37.
    C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  38. 38.
    N. Gershenfeld, I. Chuang, Bulk spin resonance quantum computing. Science 275, 350 (1997)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    B. Giles, P. Selinger, Exact synthesis of multiqubit Clifford+T circuits. Phys. Rev. A 87, 032,332 (2013)CrossRefGoogle Scholar
  40. 40.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    L. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    T. Harty, D. Allcock, C. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, D. Lucas, High-fidelity preparation, gates, memory and readout of a trapped-ion quantum bit (2014). arXiv:1403.1524Google Scholar
  43. 43.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)ADSCrossRefGoogle Scholar
  44. 44.
    C. Hu, A. Young, J. O’Brien, W. Munro, J. Rarity, Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085,307 (2008)Google Scholar
  45. 45.
    C. Hu, W. Munro, J. O’Brien, J. Rarity, Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 025,326 (2009)Google Scholar
  46. 46.
    N.C. Jones, R.V. Meter, A. Fowler, P. McMahon, J. Kim, T. Ladd, Y. Yamamoto, A layered architecture for quantum computing using quantum dots. Phys. Rev. X 2, 031,007 (2012)Google Scholar
  47. 47.
    B. Kane, A silicon-based nuclear spin quantum computer. Nature (London) 393, 133 (1998)Google Scholar
  48. 48.
    A. Kitaev, Quantum computations: algorithms and error correction. Russ. Math. Serv. 52, 1191 (1997)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    A. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)ADSMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    T. Kleinjung, K. Aoki, J. Franke, A.K. Lenstra, E. Thomé, J.W. Bos, P. Gaudry, A. Kruppa, P.L. Montgomery, D.A. Osvik, H. te Riele, A. Timofeev, P. Zimmermann, Factorization of a 768-bit RSA modulus, in Advances in Cryptology – CRYPTO 2010, ed. by T. Rabin. IACR International Association for Cryptologic Research (Springer, Berlin, 2010), pp. 333–350Google Scholar
  51. 51.
    V. Kliuchnikov, D. Maslov, M. Mosca, Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110, 190,502 (2013)CrossRefGoogle Scholar
  52. 52.
    E. Knill, R. Laflamme, G. Milburn, A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)Google Scholar
  53. 53.
    V. Kolmogorov, Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1, 43 (2009)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    H.K. Lo, S. Popescu, T. Spiller (eds.), Introduction To Quantum Computation and Information (World Scientific, Singapore, 1998)Google Scholar
  55. 55.
    C. Lorenz, R. Ziff, Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices. Phys. Rev. E. 57, 230 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    D. Loss, D. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    R.V. Meter, T. Ladd, A. Fowler, Y. Yamamoto, Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quantum Inf. 8, 295 (2010)CrossRefGoogle Scholar
  58. 58.
    C. Monroe, R. Raussendorf, A. Ruthven, K. Brown, P. Maunz, L.M. Duan, J. Kim, Large scale modular quantum computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022,317 (2014)CrossRefGoogle Scholar
  59. 59.
    J. Mooij, T. Orlando, L. Levitov, L. Tian, C. van der Wal, S. Lloyd, Josephson persistent-current qubit. Science 285, 1096–1039 (1999)CrossRefGoogle Scholar
  60. 60.
    Y. Nakamura, Y.A. Pashkin, J. Tsai, Coherent control of macroscopic quantum states in a cooper-pair box. Nature (London) 398, 786 (1999)Google Scholar
  61. 61.
    K. Nemoto, M. Trupke, S. Devitt, A. Stephens, K. Buczak, T. Nobauer, M. Everitt, J. Schmiedmayer, W. Munro, Photonic architecture for scalable quantum information processing in NV-diamond. arXiv:1309.4277 (2013)Google Scholar
  62. 62.
    M. Nielsen, Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040,503 (2004)CrossRefGoogle Scholar
  63. 63.
    M. Nielsen, I. Chuang, Quantum Computation and Information, 2nd edn. (Cambridge University Press, Cambridge/New York, 2000)MATHGoogle Scholar
  64. 64.
    T. Ohno, G. Arakawa, I. Ichinose, T. Matsui, Phase structure of the random-plaquette image gauge model: accuracy threshold for a toric quantum memory. Nucl. Phys. B 697, 462 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    A. Paetznick, A. Fowler, Quantum circuit optimization by topological compaction in the surface code (2013). arXiv:1304.2807Google Scholar
  66. 66.
    S.J.D. Phoenix, P.L. Knight, Establishment of an entangled atom-field state in the jaynes-cummings model. Phys. Rev. A 44, 6023–6029 (1991). doi:10.1103/PhysRevA.44.6023. http://link.aps.org/doi/10.1103/PhysRevA.44.6023
  67. 67.
    R. Raussendorf, H.J. Briegel, A one way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  68. 68.
    R. Raussendorf, J. Harrington, Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190,504 (2007)CrossRefGoogle Scholar
  69. 69.
    R. Raussendorf, J. Harrington, K. Goyal, A fault-tolerant one way quantum computer. Ann. Phys. 321, 2242 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    R. Raussendorf, J. Harrington, K. Goyal, Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007)ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    N. Ross, P. Selinger, Optimal ancilla-free Clifford+T approximation of z-rotations (2014). arXiv:1403.2975Google Scholar
  72. 72.
    C. Ryan, M. Laforest, R. Laflamme, Randomized benchmarking of single-and multi-qubit control in liquid-state NMR quantum information processing. New J. Phys. 11, 013,034 (2009)CrossRefGoogle Scholar
  73. 73.
    C. Santori, D. Fattal, Y. Yamamoto, Single-Photon Devices and Applications (Whiley-VCH, Weinheim, 2010)Google Scholar
  74. 74.
    P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput. 26, 1484 (1997)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    T. Spiller, W. Munro, Towards a quantum information technology industry. J. Phys.: Condens. Matter 18, 1–10 (2006)Google Scholar
  76. 76.
    T. Spiller, W. Munro, S. Barrett, P. Kok, An introduction to quantum information processing: applications and realizations. Contemp. Phys. 46, 407 (2005)ADSCrossRefGoogle Scholar
  77. 77.
    T.P. Spiller, K. Nemoto, S.L. Braunstein, W. Munro, P. van Loock, G.J. Milburn, Quantum computation by communication. New J. Phys. 8, 30 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    A. Stephens, Fault-tolerant thresholds for quantum error correction with the surface code. Phys. Rev. A 89, 022,321 (2014)CrossRefGoogle Scholar
  79. 79.
    A. Stephens, Z. Evans, S. Devitt, A. Greentree, A. Fowler, W. Munro, J. O’Brien, K. Nemoto, L. Hollenberg, Deterministic optical quantum computer using photonic modules. Phys. Rev. A 78, 032,318 (2008)CrossRefGoogle Scholar
  80. 80.
    A. Stephens, W. Munro, K. Nemoto, High-threshold topological quantum error correction against biased noise. Phys. Rev. A 88, 060,301(R) (2013)Google Scholar
  81. 81.
    R. Stock, D. James, A scalable, high-speed measurement based quantum computer using trapped ions. Phys. Rev. Lett. 102, 170,501 (2009)Google Scholar
  82. 82.
    E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sorensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–734 (2010). http://dx.doi.org/10.1038/nature09256
  83. 83.
    E. Waks, J. Vuckovic, Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153,601 (2006)CrossRefGoogle Scholar
  84. 84.
    D. Walls, G. Milburn, Quantum Optics (Springer, Berlin, 1994)CrossRefMATHGoogle Scholar
  85. 85.
    C. Wang, J. Harrington, J. Preskill, Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory. Ann. Phys. 303, 31 (2003)ADSCrossRefMATHGoogle Scholar
  86. 86.
    D. Wang, A. Fowler, A. Stephens, L. Hollenberg, Threshold error rates for the toric and surface codes. Quantum Inf. Comput. 10, 456 (2010)MathSciNetMATHGoogle Scholar
  87. 87.
    T. Wilk, S.C. Webster, A. Kuhn, G. Rempe, Single-atom single-photon quantum interface. Science 317(5837), 488–490 (2007). doi:10.1126/science.1143835. http://www.sciencemag.org/content/317/5837/488.abstract
  88. 88.
    N. Yao, L. Jiang, A. Gorshkov, P. Maurer, G. Giedke, J. Cirac, M. Lukin, Scalable architecture for a room temperature solid-state quantum information processor. Nat. Commun. 3, 800 (2012)ADSCrossRefGoogle Scholar
  89. 89.
    A. Young, C. Hu, L. Marseglia, J. Harrington, J. O’Brien, J. Rarity, Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125,318 (2008)CrossRefGoogle Scholar
  90. 90.
    S.B. Zheng, G.C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity qed. Phys. Rev. Lett. 85, 2392–2395 (2000). doi:10.1103/PhysRevLett.85.2392. http://link.aps.org/doi/10.1103/PhysRevLett.85.2392

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Simon J. Devitt
    • 1
  • Ashley M. Stephens
    • 1
  • William J. Munro
    • 2
  • Kae Nemoto
    • 1
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.NTT Basic Research Laboratories, NTT CorporationKanagawaJapan

Personalised recommendations