Skip to main content

Layered Architectures for Quantum Computers and Quantum Repeaters

  • Chapter
Principles and Methods of Quantum Information Technologies

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

  • 4949 Accesses

Abstract

This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  2. S.M. Clark, K.-M.C. Fu, T.D. Ladd, Y. Yamamoto, Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses. Phys. Rev. Lett. 99, 040501 (2007)

    Article  ADS  Google Scholar 

  3. D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    Article  ADS  Google Scholar 

  4. J. Berezovsky, M.H. Mikkelsen, N.G. Stoltz, L.A. Coldren, D.D. Awschalom, Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320(5874), 349–352 (2008)

    Article  ADS  Google Scholar 

  5. D.P. DiVincenzo, The physical implementation of quantum computation. Fortschritte der Physik 48(9–11), 771–783 (2000)

    Article  ADS  MATH  Google Scholar 

  6. A.M. Steane, Quantum computer architecture for fast entropy extraction. Quantum Inf. Comput. 2, 297 (2002)

    MATH  Google Scholar 

  7. A.M. Steane, How to build a 300 bit, 1 Giga-operation quantum computer. Quantum Inf. Comput. 7, 171 (2007)

    MathSciNet  MATH  Google Scholar 

  8. T.P. Spiller, W.J. Munro, S.D. Barrett, P. Kok, An introduction to quantum information processing: applications and realizations. Contemp. Phys. 46(6), 407–436 (2005)

    Article  ADS  Google Scholar 

  9. R. Van Meter, M. Oskin, Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. 2(1), 31–63 (2006)

    Article  Google Scholar 

  10. D. Kielpinski, C. Monroe, D. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  11. D. Copsey, M. Oskin, T. Metodiev, F.T. Chong, I. Chuang, J. Kubiatowicz, The effect of communication costs in solid-state quantum computing architectures, in Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’03) (ACM, New York, 2003), pp. 65–74

    Google Scholar 

  12. K.M. Svore, A.V. Aho, A.W. Cross, I. Chuang, I.L. Markov, A layered software architecture for quantum computing design tools. Computer 39(1), 74–83 (2006)

    Article  Google Scholar 

  13. M. Oskin, F.T. Chong, I.L. Chuang, J. Kubiatowicz, Building quantum wires: the long and the short of it, in 30th International Symposium on Computer Architecture, 2003 (ISCA’03), San Diego (2003), pp. 374–385

    Google Scholar 

  14. L.-M. Duan, C. Monroe, Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)

    Article  ADS  Google Scholar 

  15. J. Kim, C. Kim, Integrated optical approach to trapped ion quantum computation. Quantum Inf. Comput. 9, 181–202 (2009)

    ADS  Google Scholar 

  16. A.G. Fowler, W.F. Thompson, Z. Yan, A.M. Stephens, B.L.T. Plourde, F.K. Wilhelm, Long-range coupling and scalable architecture for superconducting flux qubits. Phys. Rev. B 76(17), 174507 (2007)

    Google Scholar 

  17. M. Whitney, N. Isailovic, Y. Patel, J. Kubiatowicz, Automated generation of layout and control for quantum circuits, in Proceedings of the 4th International Conference on Computing Frontiers, Ischia (2007), pp. 83–94

    Google Scholar 

  18. M.G. Whitney, N. Isailovic, Y. Patel, J. Kubiatowicz, A fault tolerant, area efficient architecture for shor’s factoring algorithm, in 36th International Symposium on Computer Architecture, 2009 (ISCA’09), Austin (2009)

    Google Scholar 

  19. N. Isailovic, Y. Patel, M. Whitney, J. Kubiatowicz, Interconnection networks for scalable quantum computers, in 33rd International Symposium on Computer Architecture, 2006 (ISCA’06), Boston (2006), pp. 366–377

    Google Scholar 

  20. N. Isailovic, M. Whitney, Y. Patel, J. Kubiatowicz, Running a quantum circuit at the speed of data, in 35th International Symposium on Computer Architecture, 2008 (ISCA’08), Beijing (2008)

    Google Scholar 

  21. R. Stock, D.F.V. James, Scalable, high-speed measurement-based quantum computer using trapped ions. Phys. Rev. Lett. 102(17), 170501 (2009)

    Google Scholar 

  22. S.J. Devitt, A.G. Fowler, T. Tilma, W.J. Munro, K. Nemoto, Classical processing requirements for a topological quantum computing system. Int. J. Quantum Inf. 8(1–2), 121–147 (2010)

    Article  Google Scholar 

  23. N. Cody Jones, R. Van Meter, A.G. Fowler, P.L. McMahon, J. Kim, T.D. Ladd, Y. Yamamoto, Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012)

    Google Scholar 

  24. A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland, Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)

    Article  ADS  Google Scholar 

  25. M.D. Reed, L. DiCarlo, S.E. Nigg, L. Sun, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382 (2012)

    Article  ADS  Google Scholar 

  26. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T.C. White, J. Mutus, A.G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O‘Malley, P. Roushan, A. Vainsencher, J. Wenner, A.N. Korotkov, A.N. Cleland, J.M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)

    Google Scholar 

  27. D. Nigg, M. Mueller, E.A. Martinez, P. Schindler, M. Hennrich, T. Monz, M.A. Martin-Delgado, R. Blatt, Quantum computations on a topologically encoded qubit. Science 345, 302 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. W. Dür, H.-J. Briegel, J.I. Cirac, P. Zoller, Quantum repeaters based on entanglement purification. Phys. Rev. A 59(1), 169–181 (1999)

    Article  ADS  Google Scholar 

  29. R. Van Meter, T.D. Ladd, A.G. Fowler, Y. Yamamoto, Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quantum Inf. 8, 295–323 (2010) Preprint available as arXiv:quant-ph/0906.2686v2

    Google Scholar 

  30. A.G. Fowler, D.S. Wang, C.D. Hill, T.D. Ladd, R. Van Meter, L.C.L. Hollenberg, Surface code quantum communication. Phys. Rev. Lett. 104(18), 180503 (2010)

    Google Scholar 

  31. G. Björk, S. Pau, J. Jacobson, Y. Yamamoto, Wannier exciton superradiance in a quantum-well microcavity. Phys. Rev. B 50(23), 17336–17348 (1994)

    Article  ADS  Google Scholar 

  32. A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Quantum information processing using quantum dot spins and cavity qed. Phys. Rev. Lett. 83(20), 4204–4207 (1999)

    Article  ADS  Google Scholar 

  33. N.H. Bonadeo, G. Chen, D. Gammon, D.G. Steel, Single quantum dot nonlinear optical spectroscopy. Physica Status Solidi B 221(1), 5–18 (2000)

    Article  ADS  Google Scholar 

  34. J.R. Guest, T.H. Stievater, X. Li, J. Cheng, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Ell, A. Thränhardt, G. Khitrova, H.M. Gibbs, Measurement of optical absorption by a single quantum dot exciton. Phys. Rev. B 65(24), 241310 (2002)

    Google Scholar 

  35. J. Hours, P. Senellart, E. Peter, A. Cavanna, J. Bloch, Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot. Phys. Rev. B 71(16), 161306 (2005)

    Google Scholar 

  36. Y. Yamamoto, T.D. Ladd, D. Press, S. Clark, K. Sanaka, C. Santori, D. Fattal, K.M. Fu, S. Höfling, S. Reitzenstein, A. Forchel, Optically controlled semiconductor spin qubits for quantum information processing. Physica Scripta 2009(T137), 014010 (2009)

    Google Scholar 

  37. M. Bayer, G. Ortner, O. Stern, A. Kuther, A.A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T.L. Reinecke, S.N. Walck, J.P. Reithmaier, F. Klopf, F. Schäfer, Fine structure of neutral and charged excitons in self-assembled in(ga)as/(al)gaas quantum dots. Phys. Rev. B 65(19), 195315 (2002)

    Google Scholar 

  38. C. Kim, C. Knoernschild, B. Liu, J. Kim, Design and characterization of mems micromirrors for ion-trap quantum computation. IEEE J. Sel. Top. Quantum Electron. 13(2), 322–329 (2007)

    Article  Google Scholar 

  39. C. Knoernschild, C. Kim, B. Liu, F.P. Lu, J. Kim, Mems-based optical beam steering system for quantum information processing in two-dimensional atomic systems. Opt. Lett. 33(3), 273–275 (2008)

    Article  ADS  Google Scholar 

  40. T.D. Ladd, Y. Yamamoto, Simple quantum logic gate with quantum dot cavity QED systems. Phys. Rev. B 84, 235307 (2011)

    Article  ADS  Google Scholar 

  41. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  42. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys. 79(4), 1217–1265 (2007)

    Article  ADS  Google Scholar 

  43. M. Kuwahara, T. Kutsuwa, K. Ono, H. Kosaka, Single charge detection of an electron created by a photon in a g-factor engineered quantum dot. Appl. Phys. Lett. 96(16), 163107 (2010)

    Google Scholar 

  44. D. Kim, S.G. Carter, A. Greilich, A.S. Backer, D. Gammon, Ultrafast optical control of entanglement between two quantum dot spins. arXiv:quant-ph/1007.3733 (2010, preprint)

    Google Scholar 

  45. C. Piermarocchi, P. Chen, L.J. Sham, D.G. Steel, Optical rkky interaction between charged semiconductor quantum dots. Phys. Rev. Lett. 89, 167402 (2002)

    Article  ADS  Google Scholar 

  46. G.F. Quinteiro, J. Fernandez-Rossier, C. Piermarocchi, Long-range spin-qubit interaction mediated by microcavity polaritons. Phys. Rev. Lett. 97(9), 097401–097404 (2006)

    Article  ADS  Google Scholar 

  47. A. Imamoḡlu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Shermin, A. Small, Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  48. T. Szkopek, P.O. Boykin, H. Fan, V.P. Roychowdhury, E. Yablonovitch, G. Simms, M. Gyure, B. Fong, Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication. IEEE Trans. Nanotechnol. 5(1), 42–49 (2006)

    Article  ADS  Google Scholar 

  49. T.D. Ladd et al., High-speed quantum computer with semiconductor spins, in Semiconductor Quantum Bits, eds. F. Henneberger, O. Benson, vol. 453 (Pan Stanford Publishing, Singapore, 2009)

    Google Scholar 

  50. J. Berezovsky, M.H. Mikkelsen, O. Gywat, N.G. Stoltz, L.A. Coldren, D.D. Awschalom, Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314(5807), 1916–1920 (2006)

    Article  ADS  Google Scholar 

  51. M. Atatüre, J. Dreiser, A. Badolato, A. Imamoglu, Observation of faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007)

    Article  Google Scholar 

  52. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, J. Vuckovic, Controlled phase shifts with a single quantum dot. Science 320(5877), 769–772 (2008)

    Article  ADS  Google Scholar 

  53. R. Long, T. Steinmetz, P. Hommelhoff, W. Hänsel, T.W. Hänsch, J. Reichel, Magnetic microchip traps and single-atom detection. Philos. Trans.: Math. Phys. Eng. Sci. 361(1808), 1375–1389 (2003)

    Google Scholar 

  54. D. Press, K. De Greve, P.L. McMahon, T.D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)

    Article  ADS  Google Scholar 

  55. L. Viola, E. Knill, Robust dynamical decoupling of quantum systems with bounded controls. Phys. Rev. Lett. 90(3), 037901 (2003)

    Google Scholar 

  56. H.K. Ng, D.A. Lidar, J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation. Phys. Rev. A84, 012305 (2011)

    Article  ADS  Google Scholar 

  57. R. Raussendorf, J. Harrington, K. Goyal, Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9(6), 199 (2007)

    Google Scholar 

  58. K.R. Brown, A.W. Harrow, I.L. Chuang, Arbitrarily accurate composite pulse sequences. Phys. Rev. A 70, 052318 (2004)

    Article  ADS  Google Scholar 

  59. Y. Tomita, J.T. Merrill, K.R. Brown, Multi-qubit compensation sequences. New J. Phys. 12(1), 015002 (2010)

    Google Scholar 

  60. P.W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  61. A.M. Steane, Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793–797 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. A.R. Calderbank, P.W. Shor, Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996)

    Article  ADS  Google Scholar 

  63. D. Gottesman, Stabilizer codes and quantum error correction. PhD thesis, California Institute of Technology, Pasadena, 1997

    Google Scholar 

  64. P. John, Fault-tolerant quantum computation, in Quantum information and computation, ed. by H.-K. Lo, T. Spiller, S. Popescu (World Scientific, Singapore, 1998)

    Google Scholar 

  65. A. Kitaev, Fault-tolerant quantum computation by anyons. arXiv:quant-ph/9707021 (1997, preprint)

    Google Scholar 

  66. S.B. Bravyi, A.Y. Kitaev, Quantum codes on a lattice with boundary. arXiv:quant-ph/9811052 (1998, preprint)

    Google Scholar 

  67. A.G. Fowler, A.M. Stephens, P. Groszkowski, High-threshold universal quantum computation on the surface code. Phys. Rev. A 80(5), 052312 (2009)

    Google Scholar 

  68. D. Aharonov, M. Ben-Or, Fault-tolerant quantum computation with constant error, in Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing (STOC’97) (ACM, New York, 1997), pp. 176–188

    Google Scholar 

  69. A. Aspuru-Guzik, A.D. Dutoi, P.J. Love, M. Head-Gordon, Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005)

    Article  ADS  Google Scholar 

  70. R. Raussendorf, J. Harrington, Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98(19), 190504 (2007)

    Google Scholar 

  71. A.G. Fowler, D.S. Wang, L.C.L. Hollenberg, Surface code quantum error correction incorporating accurate error propagation. Quantum Inf. Comput. 11, 8 (2011)

    MathSciNet  MATH  Google Scholar 

  72. D.S. Wang, A.G. Fowler, L.C.L. Hollenberg, Surface code quantum computing with error rates over 1%. Phys. Rev. A83, 020302(R) (2011)

    Google Scholar 

  73. S.J. Devitt, A.G. Fowler, A.M. Stephens, A.D. Greentree, L.C.L. Hollenberg, W.J. Munro, K. Nemoto, Architectural design for a topological cluster state quantum computer. New J. Phys. 11(8), 083032 (2009)

    Google Scholar 

  74. E. Knill, Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    Article  ADS  Google Scholar 

  75. D.P. DiVincenzo, P. Aliferis, Effective fault-tolerant quantum computation with slow measurements. Phys. Rev. Lett. 98(2), 020501 (2007)

    Google Scholar 

  76. S. Anders, H.J. Briegel, Fast simulation of stabilizer circuits using a graph-state representation. Phys. Rev. A 73(2), 022334 (2006)

    Google Scholar 

  77. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, 1 edn. (Cambridge University Press, Cambridge/New York, 2000)

    MATH  Google Scholar 

  78. N.C. Jones, J.D. Whitfield, P.L. McMahon, M.-H. Yung, R. Van Meter, A. Aspuru-Guzik, Y. Yamamoto, Faster quantum chemistry simulation on fault-tolerant quantum computers. New J. Phys. 14(11), 115023 (2012)

    Google Scholar 

  79. S. Bravyi, A. Kitaev, Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A 71(2), 022316 (2005)

    Google Scholar 

  80. C.M. Dawson, M.A. Nielsen, The solovay-kitaev algorithm. Quantum Inf. Comput. 6, 81 (2006)

    MathSciNet  MATH  Google Scholar 

  81. K. De Greve, L. Yu, P.L. McMahon, J.S. Pelc, C.M. Natarajan, N. Young Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421 (2012)

    Article  ADS  Google Scholar 

  82. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation CCF-0829694, the Univ. of Tokyo Special Coordination Funds for Promoting Science and Technology, NICT, and the Japan Society for the Promotion of Science (JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan C. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Jones, N.C. (2016). Layered Architectures for Quantum Computers and Quantum Repeaters. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_18

Download citation

Publish with us

Policies and ethics