High-Orbital Exciton-Polariton Condensation: Towards Quantum-Simulator Applications

  • Na Young Kim
  • Kenichiro Kusudo
  • Tim Byrnes
  • Naoyuki Masumoto
  • Yoshihisa Yamamoto
Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

We review high-orbital exciton-polariton condensation experiments in various two-dimensional lattices. The dynamical nature of exciton-polaritons spontaneously forms condensates at non-zero momentum, resulting from the competition between the finite lifetime and the cooling time. We describe the basics of exciton-polariton condensation, methods used to create lattices, and identification of their orbital order via photoluminescence in real and momentum spaces. We discuss the current status of high-orbital exciton-polariton condensates and the implications towards the bosonic quantum simulators.

Keywords

Microcavity Quantum wells Excitons Exciton-polaritons Condensation Orbitals (Micro)-photoluminescence 

Notes

Acknowledgements

We acknowledge Navy/SPAWAR Grant N66001-09-1-2024, the Japan Society for the Promotion of Science (JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)”. We deeply thank all our collaborators: Prof. Alfred Forchel, Dr. Sven Höfling, Dr. Andreas Löffler for providing the wafer; Prof. T. Fujisawa, Dr. N. Kumada for supporting the device fabrication; Prof. C. Wu, Dr. Z. Cai for theoretical discussions.

References

  1. 1.
    F. Reif, Fundamentals of Statistical and Thermal Physics (Waveland Press, Long Grove, 1982)Google Scholar
  2. 2.
    G.D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum Publishers, New York, 1981)Google Scholar
  3. 3.
    Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    A. Griffin, D.W. Snoke, S. Stringari, Bose-Einstein Condensation (Cambridge University Press, Cambridge/New York, 1996)Google Scholar
  5. 5.
    L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, 2003)Google Scholar
  6. 6.
    C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge/New York, 2008)CrossRefGoogle Scholar
  7. 7.
    P. Kapitza, Viscosity of liquid helium below the \(\lambda\)-point. Nature 141, 74 (1938)ADSCrossRefGoogle Scholar
  8. 8.
    J.F. Allen, A.D. Misener, Flow of liquid helium II. Nature 141, 75 (1938)ADSCrossRefGoogle Scholar
  9. 9.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975)Google Scholar
  10. 10.
    E. Cornell, C.E. Wieman, Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    W. Ketterle, When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    S. Chu, The manipulation of neutral particles. Rev. Mod. Phys. 70, 685 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    C.N. Cohen-Tannoudji, Manipulating atoms with photons. Rev. Mod. Phys. 70, 707 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    W.D. Phillips, Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Bose-Einstein condensation of dilute magnons in TlCuCl3. Phys. Rev. Lett. 84, 5868 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Serga, V.S. Tiberkevich, C.W. Sandweg, V.I. Vasyuchka, D.A. Bozhko, A.V. Chumak, T. Neumann, B. Obry, G.A. Melkov, A.N. Slavin, B. Hillebrands, Bose-Einstein condensation in an ultra-hot gas of pumped magnons. Nat. Commun. 5, 3452 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Moskalenko, D.W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons. And Coherent Nonlinear Optics with Excitons (Cambridge University Press, Cambridge/New York, 2000)Google Scholar
  19. 19.
    R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Lloyd, Universal quantum simulators. Science 273, 1073–1078 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    I. Buluta, F. Nori, Quantum simulators. Science 326, 108–111 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    L.V. Butov, C.W. Lai, A.L. Ivanov, A.C. Gossard, D.S. Chemla, Towards Bose-Einstein condensation of excitons in potential traps. Nature 417, 47 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    J.P. Eisenstein, A.H. MacDonald, Bose-Einstein condensation of excitons in bilayer electron systems. Nature 432, 691 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    K.J. Vahala, Optical microcavities. Nature 424, 839 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcvity. Phys. Rev. Lett. 69, 3314–3317 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    A. Kavokin, J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Clarendon Press, Oxford, 2006)Google Scholar
  28. 28.
    D. Snoke, P. Littlewood, Polariton condensates. Phys. Today 63(8), 42–47 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1490–1537 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    E. Hecht, Optics (Addison-Wesley, 2001)Google Scholar
  31. 31.
    S. Christopoulos et al., Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    J.J. Baumberg, A.V. Kavokin, S. Christopoulos, A.J.D. Crundy, R. Butté, G. Christmann, D.D. Solnyshkov, G. Malpuech, G.B. von Högersthal, El Feltin, J.-F. Carlin, N. Grandjean, Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101, 136409 (2008)Google Scholar
  34. 34.
    M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, M. Kaliteevski, ZnO as a material mostly adapted for realization of room-temperature polariton laser. Phys. Rev. B 65, 161205 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    J.R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, C.-C. Lee, Large vacuum splitting in ZnO-based hybrid microcavities observed at room temperature. Appl. Phys. Lett. 94, 061103 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    M. Litinskaya, P. Reineker, V.M. Agranovich, Exciton-polaritons in a crystalline anisotropic organic microcavity. Phys. Status Solidi A 201, 646 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    S. Kéna-Cohen, M. Davanço, S.R. Forrest, Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    S. Kéna-Cohen, S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    K. Huang, Statistical Mechanics (Wiley, New York, 1987)MATHGoogle Scholar
  40. 40.
    C.W. Lai et al., Coherent zero-state and π-state in an exciton-poalriton condensate array. Nature 450, 529–533 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    H. Deng, D. Press, S. Götzinger, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    J. Kapsrzak et al., Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    R.B. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    N.Y. Kim, K. Kusudo, C. Wu, N. Matsumoto, A. Löffler, S. Höfling, N. Kumada, L. Worschech, A. Forchel, Y. Yamamoto, Dynamic d-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential. Nat. Phys. 7, 681–686 (2011)CrossRefGoogle Scholar
  47. 47.
    K. Kusudo, N.Y. Kim, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Stochastic formation of polariton condensates in two degenerate orbital states. Phys. Rev. B 87, 214503 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    N.Y. Kim, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-polariton condensates near the DIrac point in a triangular lattice. New J. Phys. 15, 035032 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    N.Y. Kim, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, f-band condensates in exciton-polariton lattice systems. Phys. Rev. B 89, 085306 (2014)Google Scholar
  50. 50.
    N. Masumoto, N.Y. Kim, T. Byrnes, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-polariton condensates with flat bands in a two-dimensional kagome lattice. New J. Phys. 14, 065002 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D.D. Solnyshkov, G. Malpuech, E. Galopin, A. Lema\(\hat{i}\) tre, J. Bloch, A. Amo, Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014)Google Scholar
  52. 52.
    M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, I. Bloch, Quantum phase transition from a superfulid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    I. Bloch, J. Dalibard, S. Nascimbéne, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012)CrossRefGoogle Scholar
  54. 54.
    R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012)CrossRefGoogle Scholar
  55. 55.
    A.A. Houck, H. Türeci, J. Koch, On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012)CrossRefGoogle Scholar
  56. 56.
    A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M.I. Katsnelson, A. Pinczuk, L.N. Pfeiffer, K.W. West, V. Pellegrini, Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963)ADSCrossRefGoogle Scholar
  58. 58.
    C. Wu, Unconventional Bose-Einstein condensation beyond the “No-node” theorem. Mod. Phys. Lett. 23, 1 (2009)ADSCrossRefMATHGoogle Scholar
  59. 59.
    J. Bloch, F. Boeuf, J.M. Gérard, B. Legrand, J.Y. Marzin, R. Planel, V. Thierry-Mieg, E. Costard, Strong and weak coupling regime in pillar semiconductor microcavities. Physica E 2, 915 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    T. Jacqmin et al., Direct observation of Dirac cones and a flatband in a honeycomb lattice for polartions. arXiv:1310.8105 (2013)Google Scholar
  61. 61.
    I.A. Shelykh, A.V. Kavokin, Y.G. Rubo, T.C.H. Liew, G. Malpuech, Polariton polarizatio-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol. 25, 013001 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Na Young Kim
    • 1
  • Kenichiro Kusudo
    • 2
  • Tim Byrnes
    • 2
  • Naoyuki Masumoto
    • 2
  • Yoshihisa Yamamoto
    • 3
  1. 1.Edward L. Ginzton LaboratoryStanford UniversityStanfordUSA
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.ImPACT ProgramCouncil for Science Technology and InnovationTokyoJapan

Personalised recommendations