Skip to main content

High-Orbital Exciton-Polariton Condensation: Towards Quantum-Simulator Applications

  • Chapter
Principles and Methods of Quantum Information Technologies

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

Abstract

We review high-orbital exciton-polariton condensation experiments in various two-dimensional lattices. The dynamical nature of exciton-polaritons spontaneously forms condensates at non-zero momentum, resulting from the competition between the finite lifetime and the cooling time. We describe the basics of exciton-polariton condensation, methods used to create lattices, and identification of their orbital order via photoluminescence in real and momentum spaces. We discuss the current status of high-orbital exciton-polariton condensates and the implications towards the bosonic quantum simulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Reif, Fundamentals of Statistical and Thermal Physics (Waveland Press, Long Grove, 1982)

    Google Scholar 

  2. G.D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum Publishers, New York, 1981)

    Google Scholar 

  3. Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    Article  ADS  Google Scholar 

  4. A. Griffin, D.W. Snoke, S. Stringari, Bose-Einstein Condensation (Cambridge University Press, Cambridge/New York, 1996)

    Google Scholar 

  5. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, 2003)

    Google Scholar 

  6. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge/New York, 2008)

    Book  Google Scholar 

  7. P. Kapitza, Viscosity of liquid helium below the \(\lambda\)-point. Nature 141, 74 (1938)

    Article  ADS  Google Scholar 

  8. J.F. Allen, A.D. Misener, Flow of liquid helium II. Nature 141, 75 (1938)

    Article  ADS  Google Scholar 

  9. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975)

    Google Scholar 

  10. E. Cornell, C.E. Wieman, Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875 (2002)

    Article  ADS  Google Scholar 

  11. W. Ketterle, When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131 (2002)

    Article  ADS  Google Scholar 

  12. S. Chu, The manipulation of neutral particles. Rev. Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  13. C.N. Cohen-Tannoudji, Manipulating atoms with photons. Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  14. W.D. Phillips, Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  15. T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Bose-Einstein condensation of dilute magnons in TlCuCl3. Phys. Rev. Lett. 84, 5868 (2000)

    Article  ADS  Google Scholar 

  16. A.A. Serga, V.S. Tiberkevich, C.W. Sandweg, V.I. Vasyuchka, D.A. Bozhko, A.V. Chumak, T. Neumann, B. Obry, G.A. Melkov, A.N. Slavin, B. Hillebrands, Bose-Einstein condensation in an ultra-hot gas of pumped magnons. Nat. Commun. 5, 3452 (2014)

    Article  ADS  Google Scholar 

  17. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

  18. S.A. Moskalenko, D.W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons. And Coherent Nonlinear Optics with Excitons (Cambridge University Press, Cambridge/New York, 2000)

    Google Scholar 

  19. R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  20. S. Lloyd, Universal quantum simulators. Science 273, 1073–1078 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. I. Buluta, F. Nori, Quantum simulators. Science 326, 108–111 (2009)

    Article  ADS  Google Scholar 

  22. I.M. Georgescu, S. Ashhab, F. Nori, Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  23. L.V. Butov, C.W. Lai, A.L. Ivanov, A.C. Gossard, D.S. Chemla, Towards Bose-Einstein condensation of excitons in potential traps. Nature 417, 47 (2002)

    Article  ADS  Google Scholar 

  24. J.P. Eisenstein, A.H. MacDonald, Bose-Einstein condensation of excitons in bilayer electron systems. Nature 432, 691 (2004)

    Article  ADS  Google Scholar 

  25. K.J. Vahala, Optical microcavities. Nature 424, 839 (2003)

    Article  ADS  Google Scholar 

  26. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcvity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  ADS  Google Scholar 

  27. A. Kavokin, J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Clarendon Press, Oxford, 2006)

    Google Scholar 

  28. D. Snoke, P. Littlewood, Polariton condensates. Phys. Today 63(8), 42–47 (2010)

    Article  Google Scholar 

  29. H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1490–1537 (2010)

    Article  ADS  Google Scholar 

  30. E. Hecht, Optics (Addison-Wesley, 2001)

    Google Scholar 

  31. S. Christopoulos et al., Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  32. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008)

    Article  ADS  Google Scholar 

  33. J.J. Baumberg, A.V. Kavokin, S. Christopoulos, A.J.D. Crundy, R. Butté, G. Christmann, D.D. Solnyshkov, G. Malpuech, G.B. von Högersthal, El Feltin, J.-F. Carlin, N. Grandjean, Spontaneous polarization buildup in a room-temperature polariton laser. Phys. Rev. Lett. 101, 136409 (2008)

    Google Scholar 

  34. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, M. Kaliteevski, ZnO as a material mostly adapted for realization of room-temperature polariton laser. Phys. Rev. B 65, 161205 (2002)

    Article  ADS  Google Scholar 

  35. J.R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-R. Liu, W.-F. Hsieh, C.-C. Kuo, C.-C. Lee, Large vacuum splitting in ZnO-based hybrid microcavities observed at room temperature. Appl. Phys. Lett. 94, 061103 (2009)

    Article  ADS  Google Scholar 

  36. M. Litinskaya, P. Reineker, V.M. Agranovich, Exciton-polaritons in a crystalline anisotropic organic microcavity. Phys. Status Solidi A 201, 646 (2004)

    Article  ADS  Google Scholar 

  37. S. Kéna-Cohen, M. Davanço, S.R. Forrest, Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008)

    Article  ADS  Google Scholar 

  38. S. Kéna-Cohen, S.R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371 (2010)

    Article  ADS  Google Scholar 

  39. K. Huang, Statistical Mechanics (Wiley, New York, 1987)

    MATH  Google Scholar 

  40. C.W. Lai et al., Coherent zero-state and π-state in an exciton-poalriton condensate array. Nature 450, 529–533 (2007)

    Article  ADS  Google Scholar 

  41. H. Deng, D. Press, S. Götzinger, G.S. Solomon, R. Hey, K.H. Ploog, Y. Yamamoto, Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006)

    Article  ADS  Google Scholar 

  42. A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996)

    Article  ADS  Google Scholar 

  43. H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002)

    Article  ADS  Google Scholar 

  44. J. Kapsrzak et al., Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    Article  ADS  Google Scholar 

  45. R.B. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2010)

    Article  ADS  Google Scholar 

  46. N.Y. Kim, K. Kusudo, C. Wu, N. Matsumoto, A. Löffler, S. Höfling, N. Kumada, L. Worschech, A. Forchel, Y. Yamamoto, Dynamic d-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential. Nat. Phys. 7, 681–686 (2011)

    Article  Google Scholar 

  47. K. Kusudo, N.Y. Kim, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Stochastic formation of polariton condensates in two degenerate orbital states. Phys. Rev. B 87, 214503 (2011)

    Article  ADS  Google Scholar 

  48. N.Y. Kim, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-polariton condensates near the DIrac point in a triangular lattice. New J. Phys. 15, 035032 (2013)

    Article  ADS  Google Scholar 

  49. N.Y. Kim, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, f-band condensates in exciton-polariton lattice systems. Phys. Rev. B 89, 085306 (2014)

    Google Scholar 

  50. N. Masumoto, N.Y. Kim, T. Byrnes, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-polariton condensates with flat bands in a two-dimensional kagome lattice. New J. Phys. 14, 065002 (2012)

    Article  ADS  Google Scholar 

  51. T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D.D. Solnyshkov, G. Malpuech, E. Galopin, A. Lema\(\hat{i}\) tre, J. Bloch, A. Amo, Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014)

    Google Scholar 

  52. M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, I. Bloch, Quantum phase transition from a superfulid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)

    Article  ADS  Google Scholar 

  53. I. Bloch, J. Dalibard, S. Nascimbéne, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012)

    Article  Google Scholar 

  54. R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012)

    Article  Google Scholar 

  55. A.A. Houck, H. Türeci, J. Koch, On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012)

    Article  Google Scholar 

  56. A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M.I. Katsnelson, A. Pinczuk, L.N. Pfeiffer, K.W. West, V. Pellegrini, Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176–1179 (2011)

    Article  ADS  Google Scholar 

  57. J. Hubbard, Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963)

    Article  ADS  Google Scholar 

  58. C. Wu, Unconventional Bose-Einstein condensation beyond the “No-node” theorem. Mod. Phys. Lett. 23, 1 (2009)

    Article  ADS  MATH  Google Scholar 

  59. J. Bloch, F. Boeuf, J.M. Gérard, B. Legrand, J.Y. Marzin, R. Planel, V. Thierry-Mieg, E. Costard, Strong and weak coupling regime in pillar semiconductor microcavities. Physica E 2, 915 (1998)

    Article  ADS  Google Scholar 

  60. T. Jacqmin et al., Direct observation of Dirac cones and a flatband in a honeycomb lattice for polartions. arXiv:1310.8105 (2013)

    Google Scholar 

  61. I.A. Shelykh, A.V. Kavokin, Y.G. Rubo, T.C.H. Liew, G. Malpuech, Polariton polarizatio-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol. 25, 013001 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Navy/SPAWAR Grant N66001-09-1-2024, the Japan Society for the Promotion of Science (JSPS) through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)”. We deeply thank all our collaborators: Prof. Alfred Forchel, Dr. Sven Höfling, Dr. Andreas Löffler for providing the wafer; Prof. T. Fujisawa, Dr. N. Kumada for supporting the device fabrication; Prof. C. Wu, Dr. Z. Cai for theoretical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Young Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kim, N.Y., Kusudo, K., Byrnes, T., Masumoto, N., Yamamoto, Y. (2016). High-Orbital Exciton-Polariton Condensation: Towards Quantum-Simulator Applications. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_17

Download citation

Publish with us

Policies and ethics