Quantum Simulation with Trapped Ions—Experimental Realization of the Jaynes-Cummings-Hubbard Model—

Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

We present an experimental demonstration of the Jaynes-Cummings-Hubbard model conducted using trapped ions. This model describes an array of coupled optical cavities, each containing a two-level atom, and is expected to exhibit properties peculiar to strongly correlated systems. Using the internal and radial phonon states of two trapped ions, the model is experimentally realized and quantum phase transition from a localized insulator state to a delocalized superfluid state is demonstrated. A superfluid phase of polaritonic excitations is also observed during the adiabatic transfer process.

Keywords

Trapped ions Quantum simulation Jaynes-Cummings-Hubbard model 

References

  1. 1.
    R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Nat. Phys. 4, 757 (2008)CrossRefGoogle Scholar
  3. 3.
    K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Nature 465, 590 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    R. Islam, E.E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael, D.-G. Lin, L.-M. Duan, C.-C. Joseph Wang, J.K. Freericks, C. Monroe, Nat. Commun. 2, 377 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, I. Bloch, Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M.J. Hartmann, F. Brandao, M.B. Plenio, Laser & Photon. Rev. 2, 527 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Tomadin, R. Fazio, J. Opt. Soc. Am. B 27, A130 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Hartmann, F. Brandao, M.B. Plenio, Nat. Phys 2, 849 (2006)CrossRefGoogle Scholar
  9. 9.
    A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2, 856 (2006)CrossRefGoogle Scholar
  10. 10.
    D.G. Angelakis, M.F. Santos, S. Bose, Phys. Rev. A 76, 031805 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    D. Rossini, R. Fazio, Phys. Rev. Lett. 99, 186401 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    E.K. Irish, C.D. Ogden, M.S. Kim, Phys. Rev. A 77, 033801 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M.I. Makin, J.H. Cole, C. Tahan, L.C.L. Hollenberg, A.D. Greentree, Phys. Rev. A 77, 053819 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    P.A. Ivanov, S.S. Ivanov, N.V. Vitanov, A. Mering, M. Fleischhauer, K. Singer, Phys. Rev. A 80, 060301 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Nature 436, 87 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    M. Johanning, A.F. Varon, C. Wunderlich, J. Phys. B: At. Mol. Opt. Phys. 42, 154009 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)CrossRefGoogle Scholar
  19. 19.
    D.M. Meekhof, C. Monroe, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 76, 1796 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    X.-L. Deng, D. Porras, J.I. Cirac, Phys. Rev. A 72, 063407 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    D. Porras, J.I. Cirac, Phys. Rev. Lett. 93, 263602 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    K. Toyoda, Y. Matsuno, A. Noguchi, S. Haze, S. Urabe, Phys. Rev. Lett. 111, 160501 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    X.-L. Deng, D. Porras, J.I. Cirac, Phys. Rev. A 77, 033403 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan, C. Monroe, Phys. Rev. Lett. 103, 120502 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    S. Haze, Y. Tateishi, A. Noguchi, K. Toyoda, S. Urabe, Phys. Rev. A 85, 031401(R) (2012)Google Scholar
  27. 27.
    K. Toyoda, T. Watanabe, T. Kimura, S. Nomura, S. Haze, S. Urabe, Phys. Rev. A 83, 022315 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Nature 471, 196 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Harlander, R. Lechner, M. Brownnutt, R. Blatt, W. Hansel, Nature 471, 200 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    K. Toyoda, S. Haze, R. Yamazaki, S. Urabe, Phys. Rev. A 81, 032322 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    D.F.V. James, Appl. Phys. B 66, 181 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan, Euro. Phys. Lett. 86, 60004 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    R.J. Clark, T. Lin, K.R. Brown, I.L. Chuang, J. Appl. Phys. 105, 013114 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    M. Kumph, M. Brownnutt, R. Blatt, New J. Phys. 13, 073043 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J.D. Siverns, S. Weidt, K. Lake, B. Lekitsch, M.D. Hughes, W. Hensinger, New J. Phys. 14, 085009 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    S. Korenblit, D. Kafri, W.C. Campbell, R. Islam, E.E. Edwards, Z.-X. Gong, G.-D. Lim, L.-M. Duan, J. Kim, K. Kim, C. Monroe, New J. Phys. 14, 095024 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.RCAST, University of TokyoBunkyoJapan

Personalised recommendations