Quantum Simulation Using Ultracold Ytterbium Atoms in an Optical Lattice

  • Yoshiro Takahashi
Part of the Lecture Notes in Physics book series (LNP, volume 911)


In this chapter, we will summarize some of the important results obtained in quantum simulation research into quantum many-body systems using ultracold atoms in an optical lattice. The extremely high controllability that is offered by systems of ultracold atoms in optical lattices has already allowed some highly impressive work to be accomplished. In particular, we focus on the two-electron atoms of ytterbium (Yb), which offer unique possibilities in the quantum simulation research field. After a brief introduction to the unique features of Yb atoms, we describe several important results, including the formation of strongly interacting Bose-Fermi mixtures and a novel SU(N) Mott insulator, a novel high-resolution laser spectroscopic method for measurement of the superfluid-Mott insulator transition, a quantum simulation of the impurity system with an Yb-Li (lithium) atomic mixture, the realization of nonstandard optical lattices, and the development of methods to manipulate interatomic interactions using both magnetic and optical Feshbach resonances.


Quantum simulation Optical lattice Hubbard model Cold atom Ytterbium Superfluid Mott insulator SU(N) symmetry Feshbach resonance 



The author would like to thank all the members of Quantum Optics group of Kyoto University for their great contributions in performing the experiments described in this paper. Additionally, the author would like to thank M. Yamashita and K. Inaba for their collaboration in the theoretical analysis of atoms in an optical lattice.


  1. 1.
    S. Sugawa, Y. Takasu, K. Enomoto, Y. Takahashi, Chapter 1 “Ultracold ytterbium: Generation, many-body physics, and molecules”, in Annual Review of Cold Atoms and Molecules: Volume 1, ed. by K.W. Madison, Y. Wang, R. Ana Maria, K. Bongs (World Scientific, Singapore, 2013)Google Scholar
  2. 2.
    Y. Takasu, Y. Takahashi, Quantum degenerate gases of ytterbium atoms. J. Phys. Soc. Jpn. 78, 012001-1-11 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciurylo, P. Naidon, P.S. Julienne, Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s-wave scattering lengths. Phys. Rev. A 77, 012719-1-8 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami, Y. Takahashi, Realization of a SU(2) x SU(6) system of fermions in a cold atomic gas. Phys. Rev. Lett. 105, 190401 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    S. Taie, S. Sugawa, R. Yamazaki, Y. Takahashi, An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nat. Phys. 8, 2430 (2012)CrossRefGoogle Scholar
  6. 6.
    T. Fukuhara, S. Sugawa, M. Sugimoto, S. Taie, Y. Takahashi, Mott insulator of ultracold alkaline-earth-metal-like atoms. Phys. Rev. A 79, 041604 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, Y. Takahashi, Interaction and filling induced quantum phases of dual Mott insulators of bosons and fermions. Nat. Phys. 7, 2028 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Yamaguchi, S. Uetake, S. Kato, H. Ito, Y. Takahashi, High-resolution laser spectroscopy of a Bose-Einstein condensate using the ultranarrow magnetic quadrupole transition. New J. Phys. 12, 1367–2630 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Yamashita, S. Kato, A. Yamaguchi, S. Sugawa, T. Fukuhara, S. Uetake, Y. Takahashi, Strongly interacting array of Bose-Einstein condensates trapped in a one-dimensional optical lattice. Phys. Rev. A 87, 041604-1-4 (2013)ADSGoogle Scholar
  10. 10.
    S. Kato, R. Yamazaki, K. Shibata, R. Yamamoto, H. Yamada, Y. Takahashi, Observation of long-lived van der Waals molecules in an optical lattice. Phys. Rev. A 86, 043411-1-4 (2012)ADSGoogle Scholar
  11. 11.
    S. Kato, S. Sugawa, K. Shibata, R. Yamamoto, Y. Takahashi, Control of resonant interaction between electronic ground and excited states. Phys. Rev. Lett. 110, 173201-1-4 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M. Okano, H. Hara, M. Muramatsu, K. Doi, S. Uetake, Y. Takasu, Y. Takahashi, Simultaneous magneto-optical trapping of lithium and ytterbium atoms towards production of ultracold polar molecules. Appl. Phys. B 98, 691–696 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    H. Hara, Y. Takasu, Y. Yamaoka, J.M. Doyle, Y. Takahashi, Quantum degenerate mixtures of alkali and alkali-earth-like atoms. Phys. Rev. Lett. 106, 205304-1-4 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    H. Hara, H. Konishi, S. Nakajima, Y. Takasu, Y. Takahashi, A three-dimensional optical lattice of ytterbium and lithium atomic gas mixture. J. Phys. Soc. Jpn. 83, 014003 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    K. Enomoto, K. Kasa, M. Kitagawa, Y. Takahashi, Optical feshbach resonance using the intercombination transition. Phys. Rev. Lett. 101, 203201-1-4 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    R. Yamazaki, S. Taie, S. Sugawa, Y. Takahashi, Submicron spatial modulation of an interatomic interaction in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 050405-1-4 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Yamazaki, S. Taie, S. Sugawa, K. Enomoto, Y. Takahashi, Observation of a p-wave optical feshbach resonance. Phys. Rev. A 87, 010704-1-4 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    M. Sato, Y. Takahashi, S. Fujimoto, Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms. Phys. Rev. Lett. 103, 020401 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    M. Sato, Y. Takahashi, S. Fujimoto, Non-Abelian topological orders and Majorana fermions in spin-singlet superconductors. Phys. Rev. B 82, 134521 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    T. Takano, M. Fuyama, R. Namiki, Y. Takahashi, Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. Phys. Rev. Lett. 102, 033601-1-4 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    T. Takano, S. Tanaka, R. Namiki, Y. Takahashi, Manipulation of nonclassical atomic spin states. Phys. Rev. Lett. 104, 013602-1-4 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    R. Inoue, S. Tanaka, R. Namiki, T. Sagawa, Y. Takahashi, Unconditional quantum-noise suppression via measurement-based quantum feedback. Phys. Rev. Lett. 110, 163602-1-4 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations