A Coherent Ising Machine for MAX-CUT Problems: Performance Evaluation against Semidefinite Programming and Simulated Annealing

  • Yoshitaka Haribara
  • Shoko Utsunomiya
  • Yoshihisa Yamamoto
Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

An optical parametric oscillator network driven by a quantum measurement-feedback circuit, composed of optical homodyne detectors, analog-to-digital conversion devices and field programmable gate arrays (FPGA), is proposed and analysed as a scalable coherent Ising machine. The new scheme has an advantage that a large number of optical coupling paths, which is proportional to the square of a problem size in the worst case, can be replaced by a single quantum measurement-feedback circuit. There is additional advantage in the new scheme that a three body or higher order Ising interaction can be implemented in the FPGA digital circuit. Noise associated with the measurement-feedback process is governed by the standard quantum limit. Numerical simulation based on c-number coupled Langevin equations demonstrate a satisfying performance of the proposed Ising machine against the NP-hard MAX-CUT problems.

Keywords

Combinatorial optimization problem MAX-CUT Degenerate optical parametric oscillator Laser network Ising machine 

References

  1. 1.
    K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    V. Dotsenko, Introduction to the Replica Theory of Disordered Statistical Systems (Cambridge University Press, Cambridge/New York, 2005)Google Scholar
  3. 3.
    F. Barahona, On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15, 3241 (1982)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Kirkpatrick, D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220, 4598 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Courier Dover, Mineola, 1998)MATHGoogle Scholar
  6. 6.
    D.S. Hochbaum, Approximation Algorithms for NP-Hard Problems (PWS, Boston, 1996)MATHGoogle Scholar
  7. 7.
    M.X. Goemans, D.P. Williams, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115 (1995)MATHCrossRefGoogle Scholar
  8. 8.
    T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    G.E. Santoro, R. Martoak, E. Tosatti, R. Car, Theory of quantum annealing of an Ising spin glass. Science 295, 2427 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    M.W. Johnson et al., Quantum annealing with manufactured spins. Nature 473, 194 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472 (2001)ADSMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    N.G. Dickson et al., Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4, 1903 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Deng, D.V. Averin, M.H. Amin, P. Smith, Decoherence induced deformation of the ground state in adiabatic quantum computation. Sci. Rep. 3, 01479 (2013)ADSGoogle Scholar
  14. 14.
    S. Utsunomiya, K. Takata, Y. Yamamoto, Mapping of Ising models onto injection-locked laser systems. Opt. Express 19, 18091 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    K. Takata, S. Utsunomiya, Y. Yamamoto, Transient time of an Ising machine based on injection-locked laser network. New J. Phys. 14, 013052 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Wang, A. Marandi, K. Wen, R.L. Byer, Y. Yamamoto, Coherent Ising machine based on degenerate optical parametric oscillators. Phys. Rev. A. 88, 063853 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    A. Marandi, Z. Wang, K. Takata, R.L. Byer, Y. Yamamoto, Network of Time-Multiplexed Optical Parametric Oscillators as a Coherent Ising Machine (2014). arXiv:1407.2871v1Google Scholar
  18. 18.
    P.D. Drummond, K.J. McNeil, D.F. Walls, Non-equilibrium transitions in sub/second harmonic generation. II. Quantum theory. Opt. Acta 28, 211 (1981)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshitaka Haribara
    • 1
  • Shoko Utsunomiya
    • 1
  • Yoshihisa Yamamoto
    • 2
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.ImPACT ProgramCouncil for Science Technology and InnovationTokyoJapan

Personalised recommendations