A Degenerate Optical Parametric Oscillator Network for Coherent Computation

  • Zhe Wang
  • Alireza Marandi
  • Kenta Takata
  • Robert L. Byer
  • Yoshihisa Yamamoto
Part of the Lecture Notes in Physics book series (LNP, volume 911)


Laws of physics have proved useful for solving combinatorial optimization problems. This chapter introduces a network of degenerate optical parametric oscillators which takes advantage of principles of quantum optics to tackle NP-hard problems. The underlying mechanism originates from the bistability of the output phase of each oscillator, coherent interactions between coupled oscillators, and the inherent preference of the network for oscillating in a mode with the minimum photon loss. Computational experiments have been extensively performed using instances of an NP-hard problem in graph theory with the number of vertices ranging from 4 to 20000. The numerical results clearly demonstrate the effectiveness of the network. In addition, the network can be physically implemented on a single ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings. The implementation has been realized for the instance on the cubic graph with 4 vertices, and no computational error is detected in 1000 runs.


Degenerate OPO Quantum optics Quantum correlation Ising model NP-hard Combinatorial optimization problems 


  1. 1.
    F. Barahona, On the computational complexity of Ising spin glass model. J. Phys. A Math. Gen. 15, 3241–3253 (1982)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    V. Dotsenko, Introduction to the Replica Theory of Disordered Statistical Systems (Cambridge University Press, Cambridge, 2000)CrossRefGoogle Scholar
  3. 3.
    K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts and open questions. Rev. Mod. Phys. 58, 801–976 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979)MATHGoogle Scholar
  5. 5.
    R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, ed. by R.E. Millera, J.W. Thatcher (Plenum Press, New York, 1972), pp. 85–103CrossRefGoogle Scholar
  6. 6.
    S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)ADSMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    G.E. Santoro, R. Martonak, E. Tosatti, Theory of quantum annealing of an Ising spin glass. Science 295, 2427–2430 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001)ADSMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    W. van Dam, M. Mosca, U.V. Vazirani, How powerful is adiabatic quantum computation, in Proceedings of the 42nd IEEE Symposium on Foundation of Computer Science, Las Vegas (IEEE Computer Society, 2001)Google Scholar
  11. 11.
    D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37(1), 166–194 (2007)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986)Google Scholar
  13. 13.
    S. Utsunomiya, K. Takata, Y. Yamamoto, Mapping of Ising models onto injection-locked laser systems. Opt. Express 19, 18091–18108 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    K. Takata, S. Utsunomiya, Y. Yamamoto, Transient time of an Ising machine based on injection-locked laser network. New J. Phys. 12, 013052–013073 (2012)CrossRefGoogle Scholar
  15. 15.
    J.W.F. Woo, R. Landauer, Fluctuations in a parametrically excited subharmonic oscillator. IEEE J Quantum Electron. 7, 435–440 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    E. Goto, The parametron, a digital computing element utilizes parametric oscillation. Proc. IRE 47, 1304–1316 (1959)CrossRefGoogle Scholar
  17. 17.
    W.H. Louisell, A. Yariv, A.E. Siegman, Quantum fluctuations and noise in parametric processes i. Phys. Rev. 124, 1646–1654 (1961)ADSMATHCrossRefGoogle Scholar
  18. 18.
    A. Marandi, N.C. Leindecker, K.L. Vodopyanov, R.L. Byer, All-optical quantum random bit generation from intrinsically binary phase of parametric oscillator. Opt. Express 20, 19322–19330 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Wang, A. Marandi, K. Wen, R.L. Byer, Y. Yamamoto, Coherent Ising machine based on degenerate optical parametric oscillators. Phys. Rev. A 88, 063853 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A. Marandi, Z. Wang, K. Takata, R.L. Byer, Y. Yamamoto, Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    P.D. Drummond, K.J. McNeil, D.F. Walls, Non-equilibrium transitions in sub/second harmonic generation ii. quantum theory. Opt. Acta 28, 211–225 (1981)Google Scholar
  22. 22.
    M. Orszag, Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence (Springer, Berlin/New York, 2000)CrossRefGoogle Scholar
  23. 23.
    G. Milburn, D.F. Walls, Production of squeezed states in a degenerate parametric amplifier. Opt. Commun. 39, 401–404 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Kowalski, G.L. Albert, B.K. Rhoades, G.W. Gross, Neuronal networks with spontaneous, correlated bursting activity: theory and simulations. Neural Netw. 5, 805–822 (1992)CrossRefGoogle Scholar
  25. 25.
    J.N. Franklin, Matrix Theory (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1968)MATHGoogle Scholar
  26. 26.
    M. Yannakakis, Node-and edge-deletion np-complete problems, in Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, San Diego (IEEE Computer Society, 1978)Google Scholar
  27. 27.
    G. Royle, Cubic graphs, Oct 1996
  28. 28.
    J.D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem (Wiley, Chichester/New York, 1991)MATHGoogle Scholar
  29. 29.
    M.X. Goemans, D.P. Williams, Improved approximation algorithms for max-cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)MATHCrossRefGoogle Scholar
  30. 30.
    Y.Y. Steven, J. Benson, X. Zhang, Mixed linear and semidefinite programming for combinatorial and quadratic optimization. Optim. Mehtods Softw. 11, 515–544 (1999)CrossRefGoogle Scholar
  31. 31.
    S. Arora, S. Kale, A combinatorial, primal-dual approach to semidefinite programs, in Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, San Diego (2007)Google Scholar
  32. 32.
    P. Klein, H.-I. Lu, Efficient approximation algorithms for semidefinite programs arising from max cut and coloring, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, El Paso (1996), pp. 338–947Google Scholar
  33. 33.
    F. Alizadeth, Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5(1), 13–51 (1995)MathSciNetCrossRefGoogle Scholar
  34. 34.
    G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, H. Schnatz, Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy. Opt. Lett. 34, 2270–2272 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    L. Krippner, W.J. Munro, M.D. Reid, Transient macroscopic quantum superposition states in degenerate parametric oscillation: calculations in the large-quantum-noise limit using the positive p representation. Phys. Rev. A 50, 4330–4338 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    M.K. Olsen, P.D. Drummond, Entanglement and the Einstein-Podolsky-Rosen paradox with coupled intracavity optical down-converters. Phys. Rev. A 71, 053803 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    N. Olivier, M.K. Olsen, Bright entanglement and the Einstein–Podolsky–Rosen paradox with coupled parametric oscillators. Opt. Commun. 259, 781–788 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    P.D. Drummond, C.W. Gardiner, Generalized p-representaions in quantum mechanics. J. Phys. A Math. Gen. 13, 2353–2368 (1980)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Wolinski, H.J. Carmichael, Quantum noise in the parametric oscillator: from squeezed states to coherent state superpositions. Phys. Rev. Lett. 60, 1836–1839 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    B. Yurke, D. Stoler, Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSMATHCrossRefGoogle Scholar
  42. 42.
    L.-M. Duan, G. Giedke, J. Cirac, P. Zoller, Entanglement purification of Gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002–4005 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    K. Takata, Y. Yamamoto, Data search by a coherent Ising machine based on an injection-locked laser network with gradual pumping or coupling. Phys. Rev. A 89, 032319 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford/New York, 2007)MATHCrossRefGoogle Scholar
  45. 45.
    K. Mlmer, Y. Castin, J. Dalibard, Monte carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524–538 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Zhe Wang
    • 1
  • Alireza Marandi
    • 1
    • 2
  • Kenta Takata
    • 3
    • 2
  • Robert L. Byer
    • 1
  • Yoshihisa Yamamoto
    • 4
  1. 1.E. L. Ginzton LaboratoryStanford UniversityStanfordUSA
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.The University of TokyoTokyoJapan
  4. 4.ImPACT ProgramCouncil for Science Technology and InnovationTokyoJapan

Personalised recommendations