Coherent Computing with Injection-Locked Laser Network

  • S. Utsunomiya
  • K. Wen
  • K. Takata
  • S. Tamate
  • Yoshihisa Yamamoto
Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

Combinatorial optimization problems are ubiquitous in our modern life. The classic examples include the protein folding in biology and medicine, the frequency assignment in wireless communications, traffic control and routing in air and on surface, microprocessor circuit design, computer vision and graph cut in machine learning, and social network control. They often belong to NP, NP-complete and NP-hard classes, for which modern digital computers and future quantum computers cannot find solutions efficiently, i.e. in polynomial time [1].

Keywords

combinatorial optimization problem MAX-CUT semiconductor laser mode-locked fiber laser laser network injection locking 

References

  1. 1.
    M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, New York, 1979)MATHGoogle Scholar
  2. 2.
    K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    E. Ising, Beitrag zur theorie des ferromagnetismus. Z. Phys. 31, 253 (1925)ADSCrossRefGoogle Scholar
  4. 4.
    L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)MATHMathSciNetGoogle Scholar
  5. 5.
    F. Barahona, On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15, 3241–3253 (1982)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Nielson, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge/New York, 2000)Google Scholar
  7. 7.
    T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)ADSMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Utsunomiya, K. Takata, Y. Yamamoto, Mapping of Ising models onto injection-locked laser systems. Opt. Express 19, 18091–18108 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia (1996), p. 212Google Scholar
  11. 11.
    C.H. Bennett, E. Bernstein, G. Brassard, U.V. Vazirani, Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510 (1997)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Roland, N. Cerf, Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation. quant-ph/0405098 v2 (2005)Google Scholar
  14. 14.
    D. Gattesman, The Heisenberg representation of quantum computers. quant-ph/9807006 (1998)Google Scholar
  15. 15.
    S.D. Bartlett, B.C. Sanders, S.L. Braunstein, K. Nemoto, Efficient classical simulation of continuous variable quantum information processes. quant-ph/0109047 (2001)Google Scholar
  16. 16.
    L. Gillner, G. Bjork, Y. Yamamoto, Quantum noise properties of an injection-locked laser oscillator with pump-noise suppression and squeezed injection. Phys. Rev. A 41(9), 5053–5065 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    H.A. Haus, Y. Yamamoto, Quantum noise of an injection-locked laser oscillator. Phys. Rev. A 29, 1261–1274 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    M. Surgent, M.O. Scully, W.E. Lamb, Chapter 20, in Laser Physics (Westview Printing, Colorado, 1978), pp. 331–335Google Scholar
  19. 19.
    H. Haug, Quantum-mechanical rate equations for semiconductor lasers. Phys. Rev. 184, 338–348 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Yamamoto, S. Machida, O. Neilsson, Amplitude squeezing in a pump-noise-suppressed laser oscillator. Phys. Rev. A 34, 4025–4042 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    M. Yannakakis, Edge-deletion problems. SIAM J. Comput. 10, 297–309 (1981)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Greenlaw, R. Pedreschi, Cubic graphs. ACM Comput. Surv. 27, 471–495 (1995)CrossRefGoogle Scholar
  23. 23.
    F. Barahona, M. Grotschel, M. Junger, R. Reinelt, An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)MATHCrossRefGoogle Scholar
  24. 24.
    A. Galluccio, M. Loebl, J. Vondrak, New algorithm for the Ising problem: partition function for finite lattice graphs. Phys. Rev. Lett. 84, 5924–5927 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    C.W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 1991)MATHCrossRefGoogle Scholar
  26. 26.
    K. Takata, S. Utsunomiya, Y. Yamamoto, Transient time of an Ising machine based on injection-locked laser network. New J. Phys. 14, 013052 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    B.D. McKay, G.F. Royle, Constructing the cubic graphs on up to 20 vertices. Ars Combin. 21, 129–140 (1986)MathSciNetGoogle Scholar
  28. 28.
    M.X. Goemans, D.P. Williams, J. ACM 42, 1115 (1995)MATHCrossRefGoogle Scholar
  29. 29.
    S. Saito, O. Nilsson, Y. Yamamoto, Oscillation center frequency tuning, quantum FM noise, and direct frequency characteristics in external grating loaded semiconductor lasers. IEEE J. Quant. Electron. 18, 6 (1982)CrossRefGoogle Scholar
  30. 30.
    H. Nishimori, G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 2011)MATHGoogle Scholar
  31. 31.
    J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    A. Gordon, B. Fischer, Phys. Rev. Lett. 89, 103901 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1989)MATHCrossRefGoogle Scholar
  34. 34.
    M. Nixon, E. Ronen, A.A. Friedman, N. Davidson, Phys. Rev. Lett. 110, 184192 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • S. Utsunomiya
    • 1
  • K. Wen
    • 2
  • K. Takata
    • 3
    • 4
  • S. Tamate
    • 5
  • Yoshihisa Yamamoto
    • 6
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.E. L. Ginzton LaboratoryStanford UniversityStanfordUSA
  3. 3.The University of TokyoTokyoJapan
  4. 4.National Institute of InformaticsTokyoJapan
  5. 5.Center for Emergent Matter ScienceWako-shiJapan
  6. 6.ImPACT ProgramCouncil for Science Technology and InnovationTokyoJapan

Personalised recommendations