Quantum Information Theory for Quantum Communication

Part of the Lecture Notes in Physics book series (LNP, volume 911)

Abstract

This chapter gives a concise description of the fundamental concepts of quantum information and quantum communication, which is pertinent to the discussions in the subsequent chapters. Beginning with the basic set of rules that dictate quantum mechanics, the chapter explains the most general ways to describe quantum states, measurements, and state transformations. Convenient mathematical tools are also presented to provide an intuitive picture of a qubit, which is the simplest unit of quantum information. The chapter then elaborates on the distinction between quantum communication and classical communication, with emphasis on the role of quantum entanglement as a communication resource. Quantum teleportation and dense coding are then explained in the context of optimal resource conversions among quantum channels, classical channels, and entanglement.

Keywords

Density operator Bloch representation Generalized measurement Quantum channel Entanglement 

References

  1. 1.
    N. Gisin, Helv. Phys. Acta 62(4), 363 (1989)MathSciNetGoogle Scholar
  2. 2.
    L.P. Hughston, R. Jozsa, W.K. Wootters, Phys. Lett. A 183(1), 14 (1993)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    H.K. Lo, H.F. Chau, Phys. Rev. Lett. 78(17), 3410 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    D. Mayers, Phys. Rev. Lett. 78(17), 3414 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    A. Peres, Phys. Lett. A 128(1), 19 (1988)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Uhlmann, Rep. Math. Phys. 9(2), 273 (1976)ADSMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Jozsa, J. Modern Opt. 41(12), 2315 (1994)ADSMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69(20), 2881 (1992)ADSMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70(13), 1895 (1993)ADSMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Żukowski, A. Zeilinger, M. Horne, A. Ekert, Phys. Rev. Lett. 71(26), 4287 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Photon Science Center, Graduate School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations