Skip to main content

Central Pattern Generators

  • Chapter
  • First Online:
  • 1138 Accesses

Abstract

The neuronal networks that regulate various laryngeal movements including phonation, deglutition, and cough are mainly located in the brainstem. However, the physiological and anatomical organization of the brainstem neuronal circuitry is still not fully clarified. In this section, we addressed the contribution of the brainstem neuronal networks to the generation of these laryngeal movements. We have examined the brainstem vocal area and established fictive vocalization model in guinea pigs. The vocal area was located continuously from the periaqueductal gray in the midbrain to the ventrolateral medulla. We also investigated the activity and morphology of the swallowing-related neurons in the medulla oblongata in guinea pigs, using a juxta-cellular labeling. The swallowing-related neurons were broadly distributed in the medulla, and their axonal projections represented part of complex neuronal networks. Furthermore, we analyzed the activity of the respiratory neurons in the rostral ventral respiratory group during breathing and the non-respiratory behaviors including vocalization, swallowing, and coughing in guinea pigs. Activity of the respiratory neurons was altered during these behaviors, suggesting that the neuronal networks responsible for various laryngeal movements are overlapped and the respiratory central pattern generator can be shared among the pattern-generating circuits of the non-respiratory behaviors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Miller AD, Tan LK, Lakos SF. Brainstem projections to cats’ upper lumbar spinal cord: implications for abdominal muscle control. Brain Res. 1989;493(2):348–56.

    Article  CAS  PubMed  Google Scholar 

  2. VanderHorst VG, Terasawa E, Ralston 3rd HJ. Monosynaptic projections from the nucleus retroambiguus region to laryngeal motoneurons in the rhesus monkey. Neuroscience. 2001;107(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  3. Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283(2):248–68. 1989/05/08 ed.

    Article  CAS  PubMed  Google Scholar 

  4. Jürgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev. 2002;26(2):235–58.

    Article  PubMed  Google Scholar 

  5. Berger AJ, Averill DB, Cameron WE. Morphology of inspiratory neurons located in the ventrolateral nucleus of the tractus solitarius of the cat. J Comp Neurol. 1984;224(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  6. Iscoe S, Grélot L, Bianchi AL. Responses of inspiratory neurons of the dorsal respiratory group to stimulation of expiratory muscle and vagal afferents. Brain Res. 1990;507(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  7. Feldman JL, Del Negro CA. Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci. 2006;7(3):232–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bianchi AL, Denavit-Saubié M, Champagnat J. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev. 1995;75(1):1–45.

    CAS  PubMed  Google Scholar 

  9. Adametz J, O’Leary JL. Experimental mutism resulting from periaqueductal lesions in cats. Neurology. 1959;9:636–42.

    Article  CAS  PubMed  Google Scholar 

  10. Botez MI, Barbeau A. Role of subcortical structures, and particulary of the thalamus, in the mechanisms of speech and language. Int J Neurol. 1971;8:300–20.

    CAS  PubMed  Google Scholar 

  11. Esposito A, Demeurisse G, Alberti B, Fabbro F. Complete mutism after midbrain periaqueductal gray lesion. Neuroreport. 1999;10:681–5.

    Article  CAS  PubMed  Google Scholar 

  12. Kelly AH, Beaton LE, Magoun HW. A midbrain mechanism for facio-vocal activity. J Neurophysiol. 1946;9:181–9.

    CAS  PubMed  Google Scholar 

  13. Jürgens U, Pratt R. Role of the periaqueductal grey in vocal expression of emotion. Brain Res. 1979;167(2):367–78.

    Article  PubMed  Google Scholar 

  14. Jürgens U, Richter K. Glutamate-induced vocalization in the squirrel monkey. Brain Res. 1986;373(1–2):349–58.

    Article  PubMed  Google Scholar 

  15. Zhang SP, Davis PJ, Bandler R, Carrive P. Brain stem integration of vocalization: role of the midbrain periaqueductal gray. J Neurophysiol. 1994;72(3):1337–56.

    CAS  PubMed  Google Scholar 

  16. Holstege G. Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol. 1989;284(2):242–52.

    Article  CAS  PubMed  Google Scholar 

  17. Shiba K, Umezaki T, Zheng Y, Miller AD. The nucleus retroambigualis controls laryngeal muscle activity during vocalization in the cat. Exp Brain Res. 1997;115:513–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sugiyama Y, Shiba K, Nakazawa K, Suzuki T, Hisa Y. Brainstem vocalization area in guinea pigs. Neurosci Res. 2010;66(4):359–65.

    Article  PubMed  Google Scholar 

  19. Syka J, Suta D, Popelar J. Responses to species-specific vocalizations in the auditory cortex of awake and anesthetized guinea pigs. Hear Res. 2005;206(1–2):177–84.

    Article  PubMed  Google Scholar 

  20. Suta D, Kvasnak E, Popelar J, Syka J, Kvǎ E, Kva E, et al. Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. J Neurophysiol. 2003;90(6):3794–808.

    Google Scholar 

  21. Suta D, Popelar J, Kvasnak E, Syka J. Representation of species-specific vocalizations in the medial geniculate body of the guinea pig. Exp Brain Res. 2007;183(3):377–88.

    Article  PubMed  Google Scholar 

  22. Kyuhou S, Gemba H. Two vocalization-related subregions in the midbrain periaqueductal gray of the guinea pig. Neuroreport. 1998;9(7):1607–10.

    Article  CAS  PubMed  Google Scholar 

  23. Behrend O, Schuller G. The central acoustic tract and audio-vocal coupling in the horseshoe bat. Rhinolophus rouxi. Eur J Neurosci. 2000;12(12):4268–80.

    Article  CAS  PubMed  Google Scholar 

  24. Kessler JP, Jean A. Identification of the medullary swallowing regions in the rat. Exp Brain Res. 1985;57(2):256–63. 1985/01/01 ed.

    Article  CAS  PubMed  Google Scholar 

  25. Umezaki T, Matsuse T, Shin T. Medullary swallowing-related neurons in the anesthetized cat. Neuroreport. 1998;9:1793–8.

    Article  CAS  PubMed  Google Scholar 

  26. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.

    CAS  PubMed  Google Scholar 

  27. Broussard DL, Lynn RB, Wiedner EB, Altschuler SM. Solitarial premotor neuron projections to the rat esophagus and pharynx: implications for control of swallowing. Gastroenterology. 1998;114(6):1268–75.

    Article  CAS  PubMed  Google Scholar 

  28. Sugiyama Y, Shiba K, Nakazawa K, Suzuki T, Umezaki T, Ezure K, et al. Axonal projections of medullary swallowing neurons in guinea pigs. J Comp Neurol. 2011;519(11):2193–211.

    Article  PubMed  Google Scholar 

  29. Ludlow CL. Central nervous system control of the laryngeal muscles in humans. Respir Physiol Neurobiol. 2005;147:205–22.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jürgens U. The neural control of vocalization in mammals: a review. J Voice. 2009;23(1):1–10. 2008/01/22 ed.

    Article  PubMed  Google Scholar 

  31. Paydarfar D, Gilbert RJ, Poppel CS, Nassab PF. Respiratory phase resetting and airflow changes induced by swallowing in humans. J Physiol. 1995;483(1):273–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miller AJ. The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev. 2008;14(2):77–86.

    Article  PubMed  Google Scholar 

  33. Karlsson JA, Sant’Ambrogio G, Widdicombe J. Afferent neural pathways in cough and reflex bronchoconstriction. J Appl Physiol. 1988;65(3):1007–23.

    CAS  PubMed  Google Scholar 

  34. Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Hisa Y. Activity of respiratory neurons in the rostral medulla during vocalization, swallowing, and coughing in guinea pigs. Neurosci Res. 2014;80:17–31.

    Article  PubMed  Google Scholar 

  35. De Lanerolle NC. A pontine call site in the domestic cat: behavior and neural pathways. Neuroscience. 1990;37(1):201–14.

    Article  PubMed  Google Scholar 

  36. Nishino T, Honda Y, Kohchi T, Shirahata M, Yonezawa T. Effects of increasing depth of anaesthesia on phrenic nerve and hypoglossal nerve activity during the swallowing reflex in cats. Br J Anaesth. 1985;57(2):208–13.

    Article  CAS  PubMed  Google Scholar 

  37. Bolser D. Fictive cough in the cat. J Appl Physiol. 1991;71:2325–31.

    CAS  PubMed  Google Scholar 

  38. Grélot L, Milano S. Diaphragmatic and abdominal muscle activity during coughing in the decerebrate cat. Neuroreport. 1991;2(4):165–8.

    Article  PubMed  Google Scholar 

  39. Jiang C, Lipski J. Extensive monosynaptic inhibition of ventral respiratory group neurons by augmenting neurons in the Bötzinger complex in the cat. Exp Brain Res. 1990;81(3):639–48.

    Article  CAS  PubMed  Google Scholar 

  40. Ono K, Shiba K, Nakazawa K, Shimoyama I. Synaptic origin of the respiratory-modulated activity of laryngeal motoneurons. Neuroscience. 2006;140(3):1079–88.

    Article  CAS  PubMed  Google Scholar 

  41. Shiba K, Nakazawa K, Ono K, Umezaki T. Multifunctional laryngeal premotor neurons: their activities during breathing, coughing, sneezing, and swallowing. J Neurosci. 2007;27(19):5156–62.

    Article  CAS  PubMed  Google Scholar 

  42. Sakamoto T, Katada A, Nonaka S, Takakusaki K. Activities of expiratory neurones of the Bötzinger complex during vocalization in decerebrate cats. Neuroreport. 1996;7:2353–6.

    Article  CAS  PubMed  Google Scholar 

  43. Ezure K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog Neurobiol. 1990;35(6):429–50.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng Y, Barillot JC, Bianchi AL. Are the post-inspiratory neurons in the decerebrate rat cranial motoneurons or interneurons? Brain Res. 1991;551(1–2):256–66.

    Article  CAS  PubMed  Google Scholar 

  45. Nonaka S, Katada A, Sakamoto T, Unno T. Brain stem neural mechanisms for vocalization in decerebrate cats. Ann Otol Rhinol Laryngol Suppl. 1999;108:15–24.

    Google Scholar 

  46. Sakamoto T, Nonaka S, Katada A. Control of respiratory muscles during speech and vocalization. In: Miller AD, Bianchi AL, Bishop BP, editors. Neural control of the respiratory muscles. Florida: CRC Press; 1996. p. 249–58.

    Google Scholar 

  47. Oku Y, Tanaka I, Ezure K. Activity of bulbar respiratory neurons during fictive coughing and swallowing in the decerebrate cat. J Physiol. 1994;480(Pt 2):309–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bianchi AL, Gestreau C. The brainstem respiratory network: an overview of a half century of research. Respir Physiol Neurobiol. 2009;168(1–2):4–12. 2009/05/02 ed.

    Article  PubMed  Google Scholar 

  49. Grélot L, Barillot JC, Bianchi AL. Pharyngeal motoneurones: respiratory-related activity and responses to laryngeal afferents in the decerebrate cat. Exp Brain Res. 1989;78(2):336–44.

    PubMed  Google Scholar 

  50. Cohen MI. Discharge patterns of brain-stem respiratory neurons during Hering-Breuer reflex evoked by lung inflation. J Neurophysiol. 1969;32(3):356–74.

    CAS  PubMed  Google Scholar 

  51. Von Euler C. Brain stem mechanisms for generation and control of breathing pattern. In: Cherniack NS, Widdicombe JG, editors. Handbook of physiology: section 3, the respiratory system. Bethesda: Americal Physiological Society; 1986. p. 1–67.

    Google Scholar 

  52. Schwarzacher SW, Smith JC, Richter DW. Pre-Bötzinger complex in the cat. J Neurophysiol. 1995;73(4):1452–61.

    CAS  PubMed  Google Scholar 

  53. Kuna ST, Remmers JE. Premotor input to hypoglossal motoneurons from Kolliker-Fuse neurons in decerebrate cats. Respir Physiol. 1999;117(2–3):85–95.

    Article  CAS  PubMed  Google Scholar 

  54. Ono T, Ishiwata Y, Inaba N, Kuroda T, Nakamura Y. Modulation of the inspiratory-related activity of hypoglossal premotor neurons during ingestion and rejection in the decerebrate cat. J Neurophysiol. 1998;80:48–58.

    CAS  PubMed  Google Scholar 

  55. Gestreau C, Dutschmann M, Obled S, Bianchi AL. Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol. 2005;147(2–3):159–76.

    Article  PubMed  Google Scholar 

  56. Berman ALI. The brain stem of the cat. Madison: University of Wsconsin Press; 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Hisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Sugiyama, Y., Fuse, S., Hisa, Y. (2016). Central Pattern Generators. In: Hisa, Y. (eds) Neuroanatomy and Neurophysiology of the Larynx. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55750-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55750-0_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55749-4

  • Online ISBN: 978-4-431-55750-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics