Skip to main content

Autism Spectrum Disorder

  • Chapter
  • First Online:
Clinical Applications of Magnetoencephalography

Abstract

Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental conditions characterized by early-onset difficulties in social communication and unusually restricted, repetitive behavior and interests. There has been substantial recent research on ASD. Magnetoencephalography (MEG) is used in ASD research for its noninvasive nature of recordings and for its excellent temporal and spatial resolution. The number of MEG-based ASD studies in children is increasing with larger study groups. Furthermore, the analyses are becoming more sophisticated. Research over the last several decades using MEG has identified consistent atypical electrophysiological signatures of ASD, indicating common neural circuit disruptions, such as reduced long-range resting-state neural connectivity. In addition, auditory processing MEG signatures, such as middle-latency response (M50/M100) and gamma-band oscillatory activity, hold particular promise in the study and treatment of ASD and as candidate biomarkers of ASD. With the development of MEG customized for a child’s head, some studies even include children younger than 3 years of age. Thus, future studies investigating these MEG signatures across developmental stages are expected to reveal the underlying neurobiology of ASD and may uncover new avenues of treatments for ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American psychiatric publishing; 2013.

    Google Scholar 

  2. Kanner L. Autistic disturbances of affective contact. Acta Paedopsychiatr. 1968;35(4):100–36.

    CAS  PubMed  Google Scholar 

  3. Lai M-C, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910. doi:10.1016/S0140-6736(13)61539-1.

    Article  PubMed  Google Scholar 

  4. Lotter V. Epidemiology of autistic conditions in young children. Soc Psychiatry. 1966;1(3):124–35. doi:10.1007/BF00584048.

    Article  Google Scholar 

  5. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcin C, Montiel-Nava C, Patel V, Paula CS, Wang C, Yasamy MT, Fombonne E. Global prevalence of autism and other pervasive developmental disorders. Autism Res : Off J Int Soc Autism Res. 2012;5(3):160–79. doi:10.1002/aur.239.

    Article  Google Scholar 

  6. Fombonne E, Quirke S, Hagen A. Epidemiology of pervasive developmental disorders. In: Amaral DG, Dawson G, Geschwind DH, editors. Autism spectrum disorders. New York: Oxford University Press; 2011. p. 90–111.

    Chapter  Google Scholar 

  7. Keyes KM, Susser E, Cheslack-Postava K, Fountain C, Liu K, Bearman PS. Cohort effects explain the increase in autism diagnosis among children born from 1992 to 2003 in California. Int J Epidemiol. 2012;41(2):495–503. doi:10.1093/ije/dyr193.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Port RG, Anwar AR, Ku M, Carlson GC, Siegel SJ, Roberts TP. Prospective MEG biomarkers in ASD: pre-clinical evidence and clinical promise of electrophysiological signatures. Yale J Biol Med. 2015;88(1):25–36.

    PubMed Central  PubMed  Google Scholar 

  9. Port RG, Gandal MJ, Roberts TP, Siegel SJ, Carlson GC. Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology. Front Cell Neurosci. 2014;8:414. doi:10.3389/fncel.2014.00414.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wilson TW, Rojas DC, Reite ML, Teale PD, Rogers SJ. Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biol Psychiatry. 2007;62(3):192–7. doi:10.1016/j.biopsych.2006.07.002.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Gandal MJ, Edgar JC, Ehrlichman RS, Mehta M, Roberts TP, Siegel SJ. Validating gamma oscillations and delayed auditory responses as translational biomarkers of autism. Biol Psychiatry. 2010;68(12):1100–6. doi:10.1016/j.biopsych.2010.09.031.

    Article  PubMed  Google Scholar 

  12. Edgar JC, Khan SY, Blaskey L, Chow VY, Rey M, Gaetz W, Cannon KM, Monroe JF, Cornew L, Qasmieh S, Liu S, Welsh JP, Levy SE, Roberts TP. Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. J Autism Dev Disord. 2015;45(2):395–405. doi:10.1007/s10803-013-1904-x.

    Article  PubMed  Google Scholar 

  13. Rojas DC, Teale PD, Maharajh K, Kronberg E, Youngpeter K, Wilson LB, Wallace A, Hepburn S. Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder. Mol Autism. 2011;2:11. doi:10.1186/2040-2392-2-11.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7:138. doi:10.3389/fnhum.2013.00138.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yuval-Greenberg S, Tomer O, Keren AS, Nelken I, Deouell LY. Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron. 2008;58(3):429–41. doi:10.1016/j.neuron.2008.03.027.

    Article  CAS  PubMed  Google Scholar 

  16. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Publishing; 1994.

    Google Scholar 

  17. Hazen EP, Stornelli JL, O’Rourke JA, Koesterer K, McDougle CJ. Sensory symptoms in autism spectrum disorders. Harv Rev Psychiatry. 2014;22(2):112–24. doi:10.1097/01.hrp.0000445143.08773.58.

    Article  PubMed  Google Scholar 

  18. Baranek GT, David FJ, Poe MD, Stone WL, Watson LR. Sensory experiences questionnaire: discriminating sensory features in young children with autism, developmental delays, and typical development. J Child Psychol Psychiatry. 2006;47(6):591–601. doi:10.1111/j.1469-7610.2005.01546.x.

    Article  PubMed  Google Scholar 

  19. Baker AE, Lane A, Angley MT, Young RL. The relationship between sensory processing patterns and behavioural responsiveness in autistic disorder: a pilot study. J Autism Dev Disord. 2008;38(5):867–75. doi:10.1007/s10803-007-0459-0.

    Article  PubMed  Google Scholar 

  20. Klintwall L, Holm A, Eriksson M, Carlsson LH, Olsson MB, Hedvall A, Gillberg C, Fernell E. Sensory abnormalities in autism. A brief report. Res Dev Disabil. 2011;32(2):795–800. doi:10.1016/j.ridd.2010.10.021.

    Article  PubMed  Google Scholar 

  21. Tomchek SD, Dunn W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occup Ther: Off Publ Am Occup Ther Assoc. 2007;61(2):190–200.

    Article  Google Scholar 

  22. Marco EJ, Hinkley LB, Hill SS, Nagarajan SS. Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res. 2011;69(5 Pt 2):48R–54R. doi:10.1203/PDR.0b013e3182130c54.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Leyfer OT, Folstein SE, Bacalman S, Davis NO, Dinh E, Morgan J, Tager-Flusberg H, Lainhart JE. Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord. 2006;36(7):849–61. doi:10.1007/s10803-006-0123-0.

    Article  PubMed  Google Scholar 

  24. Begeer S, Mandell D, Wijnker-Holmes B, Venderbosch S, Rem D, Stekelenburg F, Koot HM. Sex differences in the timing of identification among children and adults with autism spectrum disorders. J Autism Dev Disord. 2013;43(5):1151–6. doi:10.1007/s10803-012-1656-z.

    Article  PubMed  Google Scholar 

  25. Giarelli E, Wiggins LD, Rice CE, Levy SE, Kirby RS, Pinto-Martin J, Mandell D. Sex differences in the evaluation and diagnosis of autism spectrum disorders among children. Disabil Health J. 2010;3(2):107–16. doi:10.1016/j.dhjo.2009.07.001.

    Article  PubMed  Google Scholar 

  26. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 2011;9(6):e1001081. doi:10.1371/journal.pbio.1001081.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Reiersen AM, Constantino JN, Volk HE, Todd RD. Autistic traits in a population-based ADHD twin sample. J Child Psychol Psychiatry. 2007;48(5):464–72. doi:10.1111/j.1469-7610.2006.01720.x.

    Article  PubMed  Google Scholar 

  28. Ozonoff S, Goodlin-Jones BL, Solomon M. Evidence-based assessment of autism spectrum disorders in children and adolescents. J Clin Child Adolesc Psychol: the official journal for the Society of Clinical Child and Adolescent Psychology, American Psychological Association, Division 53 2005;34(3):523–40. doi:10.1207/s15374424jccp3403_8.

    Google Scholar 

  29. Cornew L, Roberts TP, Blaskey L, Edgar JC. Resting-state oscillatory activity in autism spectrum disorders. J Autism Dev Disord. 2012;42(9):1884–94. doi:10.1007/s10803-011-1431-6.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Ghanbari Y, Bloy L, Batmanghelich K, Roberts TP, Verma R. Dominant component analysis of electrophysiological connectivity networks. Med Image Comput Comput Assist Interv: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 2012;15(Pt 3):231–8.

    Google Scholar 

  31. Ghanbari Y, Bloy L, Christopher Edgar J, Blaskey L, Verma R, Roberts TP. Joint analysis of band-specific functional connectivity and signal complexity in autism. J Autism Dev Disord. 2015;45(2):444–60. doi:10.1007/s10803-013-1915-7.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ye AX, Leung RC, Schafer CB, Taylor MJ, Doesburg SM. Atypical resting synchrony in autism spectrum disorder. Hum Brain Mapp. 2014;35(12):6049–66. doi:10.1002/hbm.22604.

    Article  PubMed  Google Scholar 

  33. Kitzbichler MG, Khan S, Ganesan S, Vangel MG, Herbert MR, Hamalainen MS, Kenet T. Altered development and multifaceted band-specific abnormalities of resting state networks in autism. Biol Psychiatry. 2015;77(9):794–804. doi:10.1016/j.biopsych.2014.05.012.

    Article  PubMed  Google Scholar 

  34. Edgar JC, Heiken K, Chen YH, Herrington JD, Chow V, Liu S, Bloy L, Huang M, Pandey J, Cannon KM, Qasmieh S, Levy SE, Schultz RT, Roberts TP. Resting-state alpha in autism spectrum disorder and alpha associations with thalamic volume. J Autism Dev Disord. 2015;45(3):795–804. doi:10.1007/s10803-014-2236-1.

    Article  PubMed  Google Scholar 

  35. Kikuchi M, Shitamichi K, Yoshimura Y, Ueno S, Hiraishi H, Hirosawa T, Munesue T, Nakatani H, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, Minabe Y. Altered brain connectivity in 3-to 7-year-old children with autism spectrum disorder. NeuroImage Clin. 2013;2:394–401. doi:10.1016/j.nicl.2013.03.003.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kikuchi M, Yoshimura Y, Shitamichi K, Ueno S, Hirosawa T, Munesue T, Ono Y, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, Minabe Y. A custom magnetoencephalography device reveals brain connectivity and high reading/decoding ability in children with autism. Sci Rep. 2013;3:1139. doi:10.1038/srep01139.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kikuchi M, Yoshimura Y, Hiraishi H, Munesue T, Hashimoto T, Tsubokawa T, Takahashi T, Suzuki M, Higashida H, Minabe Y. Reduced long-range functional connectivity in young children with autism spectrum disorder. Soc Cogn Affect Neurosci. 2015;10(2):248–54. doi:10.1093/scan/nsu049.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Hiraishi H, Kikuchi M, Yoshimura Y, Kitagawa S, Hasegawa C, Munesue T, Takesaki N, Ono Y, Takahashi T, Suzuki M, Higashida H, Asada M, Minabe Y. Unusual developmental pattern of brain lateralization in young boys with autism spectrum disorder: power analysis with child-sized magnetoencephalography. Psychiatry Clin Neurosci. 2015;69(3):153–60. doi:10.1111/pcn.12261.

    Article  PubMed  Google Scholar 

  39. Oram Cardy JE, Flagg EJ, Roberts W, Roberts TP. Auditory evoked fields predict language ability and impairment in children. Int J Psychophysiol: Off J Int Organ Psychophysiol. 2008;68(2):170–5. doi:10.1016/j.ijpsycho.2007.10.015.

    Article  Google Scholar 

  40. Schmidt GL, Rey MM, Oram Cardy JE, Roberts TP. Absence of M100 source asymmetry in autism associated with language functioning. Neuroreport. 2009;20(11):1037–41. doi:10.1097/WNR.0b013e32832e0ca7.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Roberts TP, Lanza MR, Dell J, Qasmieh S, Hines K, Blaskey L, Zarnow DM, Levy SE, Edgar JC, Berman JI. Maturational differences in thalamocortical white matter microstructure and auditory evoked response latencies in autism spectrum disorders. Brain Res. 2013;1537:79–85. doi:10.1016/j.brainres.2013.09.011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Edgar JC, Lanza MR, Daina AB, Monroe JF, Khan SY, Blaskey L, Cannon KM, Jenkins 3rd J, Qasmieh S, Levy SE, Roberts TP. Missing and delayed auditory responses in young and older children with autism spectrum disorders. Front Hum Neurosci. 2014;8:417. doi:10.3389/fnhum.2014.00417.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Yoshimura Y, Kikuchi M, Shitamichi K, Ueno S, Munesue T, Ono Y, Tsubokawa T, Haruta Y, Oi M, Niida Y, Remijn GB, Takahashi T, Suzuki M, Higashida H, Minabe Y. Atypical brain lateralisation in the auditory cortex and language performance in 3- to 7-year-old children with high-functioning autism spectrum disorder: a child-customised magnetoencephalography (MEG) study. Mol Autism. 2013;4(1):38. doi:10.1186/2040-2392-4-38.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Matsuzaki J, Kagitani-Shimono K, Goto T, Sanefuji W, Yamamoto T, Sakai S, Uchida H, Hirata M, Mohri I, Yorifuji S, Taniike M. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity. Neuroreport. 2012;23(2):113–8. doi:10.1097/WNR.0b013e32834ebf44.

    Article  PubMed  Google Scholar 

  45. Matsuzaki J, Kagitani-Shimono K, Sugata H, Hirata M, Hanaie R, Nagatani F, Tachibana M, Tominaga K, Mohri I, Taniike M. Progressively increased M50 responses to repeated sounds in autism spectrum disorder with auditory hypersensitivity: a magnetoencephalographic study. PLoS One. 2014;9(7):e102599. doi:10.1371/journal.pone.0102599.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Rojas DC, Maharajh K, Teale P, Rogers SJ. Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry. 2008;8:66. doi:10.1186/1471-244X-8-66.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Roberts TP, Khan SY, Rey M, Monroe JF, Cannon K, Blaskey L, Woldoff S, Qasmieh S, Gandal M, Schmidt GL, Zarnow DM, Levy SE, Edgar JC. MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging biomarker for autism. Autism Res: Off J Int Soc Autism Res. 2010;3(1):8–18. doi:10.1002/aur.111.

    Google Scholar 

  48. Roberts TP, Cannon KM, Tavabi K, Blaskey L, Khan SY, Monroe JF, Qasmieh S, Levy SE, Edgar JC. Auditory magnetic mismatch field latency: a biomarker for language impairment in autism. Biol Psychiatry. 2011;70(3):263–9. doi:10.1016/j.biopsych.2011.01.015.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Ingalhalikar M, Parker WA, Bloy L, Roberts TP, Verma R. Creating multimodal predictors using missing data: classifying and subtyping autism spectrum disorder. J Neurosci Methods. 2014;235:1–9. doi:10.1016/j.jneumeth.2014.06.030.

    Article  PubMed  Google Scholar 

  50. Ingalhalikar M, Parker WA, Bloy L, Roberts TP, Verma R. Using multiparametric data with missing features for learning patterns of pathology. Med Image Comput Comput Assist Interv MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention 2012;15(Pt 3):468–75.

    Google Scholar 

  51. Misic B, Doesburg SM, Fatima Z, Vidal J, Vakorin VA, Taylor MJ, McIntosh AR. Coordinated information generation and mental flexibility: large-scale network disruption in children with autism. Cereb Cortex. 2014. doi:10.1093/cercor/bhu082.

    PubMed Central  PubMed  Google Scholar 

  52. Doesburg SM, Vidal J, Taylor MJ. Reduced theta connectivity during set-shifting in children with autism. Front Hum Neurosci. 2013;7:785. doi:10.3389/fnhum.2013.00785.

    PubMed Central  PubMed  Google Scholar 

  53. Bangel KA, Batty M, Ye AX, Meaux E, Taylor MJ, Doesburg SM. Reduced beta band connectivity during number estimation in autism. NeuroImage Clin. 2014;6:202–13. doi:10.1016/j.nicl.2014.08.020.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Meaux E, Taylor MJ, Pang EW, Vara AS, Batty M. Neural substrates of numerosity estimation in autism. Hum Brain Mapp. 2014;35(9):4362–85. doi:10.1002/hbm.22480.

    Article  PubMed  Google Scholar 

  55. Leung RC, Ye AX, Wong SM, Taylor MJ, Doesburg SM. Reduced beta connectivity during emotional face processing in adolescents with autism. Mol Autism. 2014;5(1):51. doi:10.1186/2040-2392-5-51.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Leung RC, Pang EW, Cassel D, Brian JA, Smith ML, Taylor MJ. Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder. NeuroImage Clin. 2015;7:203–12. doi:10.1016/j.nicl.2014.11.009.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Vara AS, Pang EW, Doyle-Thomas KA, Vidal J, Taylor MJ, Anagnostou E. Is inhibitory control a ‘no-go’ in adolescents with autism spectrum disorder? Mol Autism. 2014;5(1):6. doi:10.1186/2040-2392-5-6.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, Lee SM, Gabrieli JD, Tager-Flusberg HB, Joseph RM, Herbert MR, Hamalainen MS, Kenet T. Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci U S A. 2013;110(8):3107–12. doi:10.1073/pnas.1214533110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Kenet T, Orekhova EV, Bharadwaj H, Shetty NR, Israeli E, Lee AK, Agam Y, Elam M, Joseph RM, Hamalainen MS, Manoach DS. Disconnectivity of the cortical ocular motor control network in autism spectrum disorders. Neuroimage. 2012;61(4):1226–34. doi:10.1016/j.neuroimage.2012.03.010.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Moseley RL, Pulvermuller F, Mohr B, Lombardo MV, Baron-Cohen S, Shtyrov Y. Brain routes for reading in adults with and without autism: EMEG evidence. J Autism Dev Disord. 2014;44(1):137–53. doi:10.1007/s10803-013-1858-z.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Buard I, Rogers SJ, Hepburn S, Kronberg E, Rojas DC. Altered oscillation patterns and connectivity during picture naming in autism. Front Hum Neurosci. 2013;7:742. doi:10.3389/fnhum.2013.00742.

    Article  PubMed Central  PubMed  Google Scholar 

  62. McFadden KL, Hepburn S, Winterrowd E, Schmidt GL, Rojas DC. Abnormalities in gamma-band responses to language stimuli in first-degree relatives of children with autism spectrum disorder: an MEG study. BMC Psychiatry. 2012;12:213. doi:10.1186/1471-244X-12-213.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Lewine JD, Andrews R, Chez M, Patil AA, Devinsky O, Smith M, Kanner A, Davis JT, Funke M, Jones G, Chong B, Provencal S, Weisend M, Lee RR, Orrison Jr WW. Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics. 1999;104(3 Pt 1):405–18.

    Article  CAS  PubMed  Google Scholar 

  64. Munoz-Yunta JA, Ortiz T, Palau-Baduell M, Martin-Munoz L, Salvado-Salvado B, Valls-Santasusana A, Perich-Alsina J, Cristobal I, Fernandez A, Maestu F, Dursteler C. Magnetoencephalographic pattern of epileptiform activity in children with early-onset autism spectrum disorders. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2008;119(3):626–34. doi:10.1016/j.clinph.2007.11.007.

    Article  CAS  Google Scholar 

  65. Brooks-Kayal A. Epilepsy and autism spectrum disorders: are there common developmental mechanisms? Brain Dev. 2010;32(9):731–8. doi:10.1016/j.braindev.2010.04.010.

    Article  PubMed  Google Scholar 

  66. Braeutigam S. Magnetoencephalography: fundamentals and established and emerging clinical applications in radiology. ISRN Radiol. 2013;2013:529463. doi:10.5402/2013/529463.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15(2):225–30. doi:10.1016/j.conb.2005.03.001.

    Article  CAS  PubMed  Google Scholar 

  68. Tsiaras V, Simos PG, Rezaie R, Sheth BR, Garyfallidis E, Castillo EM, Papanicolaou AC. Extracting biomarkers of autism from MEG resting-state functional connectivity networks. Comput Biol Med. 2011;41(12):1166–77. doi:10.1016/j.compbiomed.2011.04.004.

    Article  PubMed  Google Scholar 

  69. Gage NM, Siegel B, Roberts TP. Cortical auditory system maturational abnormalities in children with autism disorder: an MEG investigation. Brain Res Dev Brain Res. 2003;144(2):201–9.

    Article  CAS  PubMed  Google Scholar 

  70. Roberts TP, Poeppel D. Latency of auditory evoked M100 as a function of tone frequency. Neuroreport. 1996;7(6):1138–40.

    Article  CAS  PubMed  Google Scholar 

  71. Stufflebeam SM, Poeppel D, Rowley HA, Roberts TP. Peri-threshold encoding of stimulus frequency and intensity in the M100 latency. Neuroreport. 1998;9(1):91–4.

    Article  CAS  PubMed  Google Scholar 

  72. Roberts TP, Ferrari P, Stufflebeam SM, Poeppel D. Latency of the auditory evoked neuromagnetic field components: stimulus dependence and insights toward perception. J Clin Neurophysiol: Off Publ Am Electroencephalographic Soc. 2000;17(2):114–29.

    Article  CAS  Google Scholar 

  73. Roberts TP, Heiken K, Kahn SY, Qasmieh S, Blaskey L, Solot C, Parker WA, Verma R, Edgar JC. Delayed magnetic mismatch negativity field, but not auditory M100 response, in specific language impairment. Neuroreport. 2012;23(8):463–8. doi:10.1097/WNR.0b013e32835202b6.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Nagarajan S, Mahncke H, Salz T, Tallal P, Roberts T, Merzenich MM. Cortical auditory signal processing in poor readers. Proc Natl Acad Sci U S A. 1999;96(11):6483–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2005;116(12):2719–33. doi:10.1016/j.clinph.2005.07.007.

    Article  CAS  Google Scholar 

  76. Oda Y, Onitsuka T, Tsuchimoto R, Hirano S, Oribe N, Ueno T, Hirano Y, Nakamura I, Miura T, Kanba S. Gamma band neural synchronization deficits for auditory steady state responses in bipolar disorder patients. PLoS One. 2012;7(7):e39955. doi:10.1371/journal.pone.0039955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Reite M, Teale P, Rojas DC, Reite E, Asherin R, Hernandez O. MEG auditory evoked fields suggest altered structural/functional asymmetry in primary but not secondary auditory cortex in bipolar disorder. Bipolar Disord. 2009;11(4):371–81. doi:10.1111/j.1399-5618.2009.00701.x.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Krishnan GP, Hetrick WP, Brenner CA, Shekhar A, Steffen AN, O’Donnell BF. Steady state and induced auditory gamma deficits in schizophrenia. Neuroimage. 2009;47(4):1711–9. doi:10.1016/j.neuroimage.2009.03.085.

    Article  CAS  PubMed  Google Scholar 

  79. Tsuchimoto R, Kanba S, Hirano S, Oribe N, Ueno T, Hirano Y, Nakamura I, Oda Y, Miura T, Onitsuka T. Reduced high and low frequency gamma synchronization in patients with chronic schizophrenia. Schizophr Res. 2011;133(1–3):99–105. doi:10.1016/j.schres.2011.07.020.

    Article  PubMed  Google Scholar 

  80. Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25. doi:10.1146/annurev-neuro-062111-150444.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2(5):255–67.

    Article  CAS  PubMed  Google Scholar 

  82. Gandal MJ, Sisti J, Klook K, Ortinski PI, Leitman V, Liang Y, Thieu T, Anderson R, Pierce RC, Jonak G, Gur RE, Carlson G, Siegel SJ. GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction. Transl Psychiatry. 2012;2:e142. doi:10.1038/tp.2012.69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Constantino JN, Todd RD. Autistic traits in the general population: a twin study. Arch Gen Psychiatry. 2003;60(5):524–30. doi:10.1001/archpsyc.60.5.524.

    Article  PubMed  Google Scholar 

  84. Naatanen R. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology. 2001;38(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  85. Oram Cardy JE, Flagg EJ, Roberts W, Roberts TP. Delayed mismatch field for speech and non-speech sounds in children with autism. Neuroreport. 2005;16(5):521–5.

    Article  PubMed  Google Scholar 

  86. Kasai K, Hashimoto O, Kawakubo Y, Yumoto M, Kamio S, Itoh K, Koshida I, Iwanami A, Nakagome K, Fukuda M, Yamasue H, Yamada H, Abe O, Aoki S, Kato N. Delayed automatic detection of change in speech sounds in adults with autism: a magnetoencephalographic study. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2005;116(7):1655–64. doi:10.1016/j.clinph.2005.03.007.

    Article  Google Scholar 

  87. Tecchio F, Benassi F, Zappasodi F, Gialloreti LE, Palermo M, Seri S, Rossini PM. Auditory sensory processing in autism: a magnetoencephalographic study. Biol Psychiatry. 2003;54(6):647–54.

    Article  PubMed  Google Scholar 

  88. O’Connor K. Auditory processing in autism spectrum disorder: a review. Neurosci Biobehav Rev. 2012;36(2):836–54. doi:10.1016/j.neubiorev.2011.11.008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Takahashi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Takahashi, H., Kamio, Y., Tobimatsu, S. (2016). Autism Spectrum Disorder. In: Tobimatsu, S., Kakigi, R. (eds) Clinical Applications of Magnetoencephalography. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55729-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55729-6_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55728-9

  • Online ISBN: 978-4-431-55729-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics