Skip to main content

Better Understanding of Severe Immunological Reactions: Autoimmune Diseases

  • Chapter
Immunopharmacogenomics
  • 701 Accesses

Abstract

Autoimmune diseases, which result from an imbalance between activated immune responses mediated by antibodies or cytotoxic T cells, and immunosuppressive reactions mediated by various factors including regulatory T cells, are one of the major causes of morbidity and mortality worldwide. This chapter summarizes the current status of autoimmune disease research from the aspect of immunogenetic/immunogenomic pathogenesis. Findings from association studies, including genome-wide association studies (GWASs), could contribute to further understanding of the etiology of autoimmune diseases. For example, certain types of HLA class II molecules have been identified to have possible roles in the pathogenesis of autoimmune diseases. Recent studies have implied the usefulness of deep T-cell repertoire analysis in individual patients for identification of self-antigens, which are presented on HLA molecules involved in the development and progression of autoimmune diseases. We believe it is timely to review progress in current knowledge of autoimmune disease biology, as well as future prospects for autoimmune disease research through the immunopharmacogenomics approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nienhuis RL, Mandema E. A new serum factor in patients with rheumatoid arthritis: the antiperinuclear factor. Ann Rheum Dis. 1964;23:302–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sebbag M, Chapuy-Regaud S, Auger I, Petit-Texeira E, Clavel C, Nogueira L, et al. Clinical and pathophysiological significance of the autoimmune response to citrullinated proteins in rheumatoid arthritis. Joint Bone Spine. 2004;71:493–502.

    Article  PubMed  Google Scholar 

  3. Peene I, De Rycke L, Baeten D, Hoffman I, Veys EM, De Keyser F. History and diagnostic value of antibodies to citrullinated proteins in rheumatoid arthritis. Int J Immunopathol Pharmacol. 2004;17:107–16.

    CAS  PubMed  Google Scholar 

  4. Astorga GP, Williams Jr RC. Altered reactivity in mixed lymphocyte culture of lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum. 1969;12:547–54.

    Article  CAS  PubMed  Google Scholar 

  5. McMichael AJ, Sasazuki T, McDevitt HO, Payne RO. Increased frequency of HLA-Cw3 and HLA-Dw4 in rheumatoid arthritis. Arthritis Rheum. 1977;20:1037–42.

    Article  CAS  PubMed  Google Scholar 

  6. Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med. 1978;298:869–71.

    Article  CAS  PubMed  Google Scholar 

  7. Legrand L, Lathrop GM, Marcelli-Barge A, Dryll A, Bardin T, Debeyre N, et al. HLA-DR genotype risks in seropositive rheumatoid arthritis. Am J Hum Genet. 1984;36:690–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Freed BM, Schuyler RP, Aubrey MT. Association of the HLA-DRB1 epitope LA(67, 74) with rheumatoid arthritis and citrullinated vimentin binding. Arthritis Rheum. 2011;63:3733–9.

    Article  CAS  PubMed  Google Scholar 

  9. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS, Jia X, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet. 2012;44:291–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Irigoyen P, Lee AT, Wener MH, Li W, Kern M, Batliwalla F, et al. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum. 2005;52:3813–8.

    Article  CAS  PubMed  Google Scholar 

  11. Verpoort KN, van Gaalen FA, van der Helm-van Mil AH, Schreuder GM, Breedveld FC, Huizinga TW, et al. Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative rheumatoid arthritis. Arthritis Rheum. 2005;52:3058–62.

    Article  CAS  PubMed  Google Scholar 

  12. Wakitani S, Imoto K, Murata N, Toda Y, Ogawa R, Ochi T. The homozygote of HLA-DRB1*0901, not its heterozygote, is associated with rheumatoid arthritis in Japanese. Scand J Rheumatol. 1998;27:381–2.

    Article  CAS  PubMed  Google Scholar 

  13. Kong KF, Yeap SS, Chow SK, Phipps ME. HLA-DRB1 genes and susceptibility to rheumatoid arthritis in three ethnic groups from Malaysia. Autoimmunity. 2002;35:235–9.

    Article  CAS  PubMed  Google Scholar 

  14. Kochi Y, Yamada R, Kobayashi K, Takahashi A, Suzuki A, Sekine A, et al. Analysis of single-nucleotide polymorphisms in Japanese rheumatoid arthritis patients shows additional susceptibility markers besides the classic shared epitope susceptibility sequences. Arthritis Rheum. 2004;50:63–71.

    Article  CAS  PubMed  Google Scholar 

  15. Lee HS, Lee KW, Song GG, Kim HA, Kim SY, Bae SC. Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA-DRB1*0405 and *0901. Arthritis Rheum. 2004;50:3468–75.

    Article  PubMed  Google Scholar 

  16. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet. 2003;34:395–402.

    Article  CAS  PubMed  Google Scholar 

  17. Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44:1336–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Okada Y, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat Genet. 2012;44:511–6.

    Article  CAS  PubMed  Google Scholar 

  19. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature (Lond). 2014;506:376–81.

    Article  CAS  Google Scholar 

  20. Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010;6:683–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41:1228–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41:1234–7.

    Article  CAS  PubMed  Google Scholar 

  23. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature (Lond). 2012;491:119–24.

    Article  CAS  Google Scholar 

  24. Goyette P, Boucher G, Mallon D, Ellinghaus E, Jostins L, Huang H, et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015;47:172–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Okada Y, Yamazaki K, Umeno J, Takahashi A, Kumasaka N, Ashikawa K. HLA-Cw*1202-B*5201-DRB1*1502 haplotype increases risk for ulcerative colitis but reduces risk for Crohn’s disease. Gastroenterology. 2011;141:864–71.

    Article  CAS  PubMed  Google Scholar 

  26. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Genetic Analysis of Psoriasis C, the Wellcome Trust Case Control C, Strange A, Capon F, Spencer CC, Knight J, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42:985–90.

    Article  Google Scholar 

  28. Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012;44:1341–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tang H, Jin X, Li Y, Jiang H, Tang X, Yang X, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2014;46:45–50.

    Article  CAS  PubMed  Google Scholar 

  30. Purrmann J, Hengels KJ, Cleveland S, Gemsa R, Koldehoff M, Strohmeyer G. T-lymphocyte subpopulations in the peripheral blood of patients with Crohn disease. Z Gastroenterol. 1990;28:242–6.

    CAS  PubMed  Google Scholar 

  31. Zhang J, Weiner HL, Hafler DA. Autoreactive T cells in multiple sclerosis. Int Rev Immunol. 1992;9:183–201.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994;179:973–84.

    Article  CAS  PubMed  Google Scholar 

  33. Cope AP, Schulze-Koops H, Aringer M. The central role of T cells in rheumatoid arthritis. Clin Exp Rheumatol. 2007;25:S4–11.

    CAS  PubMed  Google Scholar 

  34. Pers JO, Le Pottier L, Devauchelle V, Saraux A, Youinou P. B lymphocytes in Sjogren’s syndrome. Rev Med Interne. 2008;29:1000–6.

    Article  PubMed  Google Scholar 

  35. Cornec D, Devauchelle-Pensec V, Tobon GJ, Pers JO, Jousse-Joulin S, Saraux A. B cells in Sjogren’s syndrome: from pathophysiology to diagnosis and treatment. J Autoimmun. 2012;39:161–7.

    Article  CAS  PubMed  Google Scholar 

  36. Goronzy JJ, Zettl A, Weyand CM. T cell receptor repertoire in rheumatoid arthritis. Int Rev Immunol. 1998;17:339–63.

    Article  CAS  PubMed  Google Scholar 

  37. Klarenbeek PL, de Hair MJ, Doorenspleet ME, van Schaik BD, Esveldt RE, van de Sande MG, et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann Rheum Dis. 2012;71:1088–93.

    Article  CAS  PubMed  Google Scholar 

  38. Spreafico R, Rossetti M, van Loosdregt J, Wallace CA, Massa M, Magni-Manzoni S, et al. A circulating reservoir of pathogenic-like CD4+ T cells shares a genetic and phenotypic signature with the inflamed synovial micro-environment. Ann Rheum Dis (in press).

    Google Scholar 

  39. Doorenspleet ME, Klarenbeek PL, de Hair MJ, van Schaik BD, Esveldt RE, van Kampen AH, et al. Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Ann Rheum Dis. 2014;73:756–62.

    Article  CAS  PubMed  Google Scholar 

  40. Ito Y, Hashimoto M, Hirota K, Ohkura N, Morikawa H, Nishikawa H, et al. Detection of T cell responses to a ubiquitous cellular protein in autoimmune disease. Science. 2014;346:363–8.

    Article  CAS  PubMed  Google Scholar 

  41. Gulwani-Akolkar B, Akolkar PN, Minassian A, Pergolizzi R, McKinley M, Mullin G, et al. Selective expansion of specific T cell receptors in the inflamed colon of Crohn’s disease. J Clin Invest. 1996;98:1344–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Camus M, Esses S, Pariente B, Le Bourhis L, Douay C, Chardiny V, et al. Oligoclonal expansions of mucosal T cells in Crohn’s disease predominate in NKG2D-expressing CD4 T cells. Mucosal Immunol. 2014;7:325–34.

    Article  CAS  PubMed  Google Scholar 

  43. Chapman CG, Yamaguchi R, Tamura K, Weidner J, Imoto S, Kwon J, et al. Characterization of T-cell receptor repertoire in inflamed tissues of patients with Crohn’s disease through deep sequencing. 2015 (submitted for publication).

    Google Scholar 

  44. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447–60.

    Article  CAS  PubMed  Google Scholar 

  46. Lossius A, Johansen JN, Vartdal F, Robins H, Jurate Saltyte B, Holmoy T, et al. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Eur J Immunol. 2014;44:3439–52.

    Article  CAS  PubMed  Google Scholar 

  47. Hor H, Kutalik Z, Dauvilliers Y, Valsesia A, Lammers GJ, Donjacour CE, et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet. 2010;42:786–9.

    Article  CAS  PubMed  Google Scholar 

  48. Remmers EF, Cosan F, Kirino Y, Ombrello MJ, Abaci N, Satorius C, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet’s disease. Nat Genet. 2010;42:698–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature (Lond). 1987;329:599–604.

    Article  CAS  Google Scholar 

  50. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39:857–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C, et al. A full genome search in multiple sclerosis. Nat Genet. 1996;13:472–6.

    Article  CAS  PubMed  Google Scholar 

  52. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H, et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. The Multiple Sclerosis Genetics Group. Nat Genet. 1996;13:469–71.

    Article  CAS  PubMed  Google Scholar 

  53. Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM, et al. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat Genet. 2011;43:897–901.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Kiyotani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tamura, K., Kiyotani, K. (2015). Better Understanding of Severe Immunological Reactions: Autoimmune Diseases. In: Nakamura, Y. (eds) Immunopharmacogenomics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55726-5_7

Download citation

Publish with us

Policies and ethics