Skip to main content

Ectopic Fat Accumulation and Glucose Homeostasis: Ectopic Fat Accumulation in Muscle

  • Chapter
  • First Online:
  • 1044 Accesses

Abstract

Adipocytes can serve as energy storage reservoirs against calorie overload. Beyond its capacity, the spillover of stored energy from adipose tissue results in ectopic fat accumulation in tissues, including skeletal muscle. The development of medical technology has enabled the quantification of intramyocellular lipid (IMCL) content. IMCL levels may be regulated by the balance between lipid influx and its mitochondrial oxidation. Therefore, it is plausible that increased IMCL content is strongly associated with insulin resistance, possibly through excessive lipid overload accompanied by obesity and/or mitochondrial dysfunction due to aging and inherited abnormalities such as type 2 diabetes. However, it is known that trained athletes with high insulin sensitivity paradoxically display high levels of IMCL. Therefore, in addition to the quantity of IMCLs, lipid moieties (quality), including diacylglycerol, should be considered to discuss IMCLs and insulin resistance. Recent emerging evidence suggests that intramyocellular enzymes such as diacylglycerol acyltransferase 1 and stearoyl-CoA desaturase-1 can regulate muscle insulin sensitivity regardless of the amount of IMCLs. In this chapter, we focus on IMCLs and insulin resistance considering intramyocellular lipid moieties and insulin signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hocking S, Samocha-Bonet D, Milner KL, Greenfield JR, Chisholm DJ (2013) Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev 34:463–500. doi:10.1210/er.2012-1041

    Article  CAS  PubMed  Google Scholar 

  2. Watt MJ, Hoy AJ (2012) Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. Am J Physiol Endocrinol Metab 302:E1315–E1328. doi:10.1152/ajpendo.00561.2011

    Article  CAS  PubMed  Google Scholar 

  3. Young SG, Zechner R (2013) Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev 27:459–484. doi:10.1101/gad.209296.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amati F, Dube JJ, Alvarez-Carnero E, Edreira MM, Chomentowski P, Coen PM et al (2011) Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes 60:2588–2597. doi:10.2337/db10-1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yokoyama H, Mori K, Emoto M, Araki T, Teramura M, Mochizuki K et al (2008) Non-oxidative glucose disposal is reduced in type 2 diabetes, but can be restored by aerobic exercise. Diabet Obes Metab 10:400–407. doi:10.1111/j.1463-1326.2007.00716.x

    Article  CAS  Google Scholar 

  6. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42:113–116. doi:10.1007/s001250051123

    Article  CAS  PubMed  Google Scholar 

  7. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48:1600–1606

    Article  CAS  PubMed  Google Scholar 

  8. Tamura Y, Tanaka Y, Sato F, Choi JB, Watada H, Niwa M et al (2005) Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 90:3191–3196. doi:10.1210/jc.2004-1959

    Article  CAS  PubMed  Google Scholar 

  9. Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86:5755–5761. doi:10.1210/jcem.86.12.8075

    Article  CAS  PubMed  Google Scholar 

  10. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1(7285):785–789

    Article  CAS  PubMed  Google Scholar 

  11. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW et al (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865. doi:10.1172/JCI118742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unraveling the mechanism. Lancet 375(9733):2267–2277. doi:10.1016/S0140-6736(10)60408-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shulman GI (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371:1131–1141. doi:10.1056/NEJMra1011035

    Article  PubMed  Google Scholar 

  14. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259. doi:10.1172/JCI5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saini-Chohan HK, Mitchell RW, Vaz FM, Zelinski T, Hatch GM (2012) Delineating the role of alterations in lipid metabolism to the pathogenesis of inherited skeletal and cardiac muscle disorders: thematic review series: genetics of human lipid diseases. J Lipid Res 53:4–27. doi:10.1194/jlr.R012120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stannard SR, Johnson NA (2004) Insulin resistance and elevated triglyceride in muscle: more important for survival than “thrifty” genes? J Physiol 554:595–607. doi:10.1113/jphysiol.2003.053926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu YH (2007) Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. J Clin Invest 117:1679–1689. doi:10.1172/JCI30565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schenk S, Horowitz JF (2007) Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest 117:1690–1698. doi:10.1172/JCI30566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen HC, Jensen DR, Myers HM, Eckel RH, Farese RV Jr (2003) Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA: diacylglycerol acyltransferase 1. J Clin Invest 111:1715–1722. doi:10.1172/JCI15859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kusunoki J, Kanatani A, Moller DE (2006) Modulation of fatty acid metabolism as a potential approach to the treatment of obesity and the metabolic syndrome. Endocrine 29:91–100. doi:10.1385/ENDO:29:1:91

    Article  CAS  PubMed  Google Scholar 

  21. Stamatikos AD, Paton CM (2013) Role of stearoyl-CoA desaturase-1 in skeletal muscle function and metabolism. Am J Physiol Endocrinol Metab 305:E767–E775. doi:10.1152/ajpendo.00268.2013

    Article  CAS  PubMed  Google Scholar 

  22. Nolan CJ, Larter CZ (2009) Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it? J Gastroenterol Hepatol 24:703–706. doi:10.1111/j.1440-1746.2009.05823.x

    Article  CAS  PubMed  Google Scholar 

  23. Hunnicutt JW, Hardy RW, Williford J, McDonald JM (1994) Saturated fatty acid-induced insulin resistance in rat adipocytes. Diabetes 43:540–545

    Article  CAS  PubMed  Google Scholar 

  24. Rahman SM, Dobrzyn A, Dobrzyn P, Lee SH, Miyazaki M, Ntambi JM (2003) Stearoyl-CoA desaturase 1 deficiency elevates insulin-signaling components and down-regulates protein-tyrosine phosphatase 1B in muscle. Proc Natl Acad Sci U S A 100:11110–11115. doi:10.1073/pnas.1934571100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dobrzyn P, Jazurek M, Dobrzyn A (1797) Stearoyl-CoA desaturase and insulin signaling – what is the molecular switch? Biochim Biophys Acta 2010:1189–1194. doi:10.1016/j.bbabio.2010.02.007

    Google Scholar 

  26. Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370:361–371. doi:10.1042/BJ20021626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dries DR, Gallegos LL, Newton AC (2007) A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. J Biol Chem 282:826–830. doi:10.1074/jbc.C600268200

    Article  CAS  PubMed  Google Scholar 

  28. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D et al (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274

    Article  CAS  PubMed  Google Scholar 

  29. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236. doi:10.1074/jbc.M200958200

    Article  CAS  PubMed  Google Scholar 

  30. Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW et al (2004) PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114:823–827. doi:10.1172/JCI22230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morino K, Neschen S, Bilz S, Sono S, Tsirigotis D, Reznick RM et al (2008) Muscle-specific IRS-1 Ser->Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes 57:2644–2651. doi:10.2337/db06-0454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szendroedi J, Yoshimura T, Phielix E, Koliaki C, Marcucci M, Zhang D et al (2014) Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A 111:9597–9602. doi:10.1073/pnas.1409229111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142. doi:10.1126/science.1082889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671. doi:10.1056/NEJMoa031314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Befroy DE, Petersen KF, Dufour S, Mason GF, de Graaf RA, Rothman DL et al (2007) Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56:1376–1381. doi:10.2337/db06-0783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coen PM, Hames KC, Leachman EM, DeLany JP, Ritov VB, Menshikova EV et al (2013) Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity. Obesity 21:2362–2371. doi:10.1002/oby.20381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862. doi:10.1074/jbc.R111.254359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhito Mori M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Mori, K., Morioka, T., Motoyama, K., Emoto, M. (2016). Ectopic Fat Accumulation and Glucose Homeostasis: Ectopic Fat Accumulation in Muscle. In: Inaba, M. (eds) Musculoskeletal Disease Associated with Diabetes Mellitus. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55720-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55720-3_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55719-7

  • Online ISBN: 978-4-431-55720-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics