Skip to main content

Fibrosis: Overview

  • Chapter
  • First Online:
  • 973 Accesses

Abstract

Fibrosis, excessive extracellular matrix deposition, in the skin, lung, and other organs is a hallmark of systemic sclerosis (SSc). Fibroblasts isolated from sclerotic lesions, such as the sclerotic skin or lung, in patients with SSc and cultured in vitro are characterized by increased synthesis of collagen and other extracellular matrix proteins, decreased synthesis and activity of matrix metalloproteinases, and increased synthesis of tissue inhibitor of metalloproteinases, consistent with the disease phenotype. The pathogenesis of SSc is still poorly understood, but increasing evidence suggests that transforming growth factor-β (TGF-β) is a key mediator of tissue fibrosis as a consequence of extracellular matrix accumulation in the pathology of SSc. TGF-β regulates diverse biological activities including cell growth, cell death or apoptosis, cell differentiation, and extracellular matrix synthesis. TGF-β is known to induce the expression of extracellular matrix proteins in mesenchymal cells and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the extracellular matrix. This chapter focuses on the mechanism of fibrosis in SSc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. LeRoy EC. Systemic sclerosis (scleroderma). In: Wyngaarden JB, Smith LH, Bennett JC, editors. Cecil text book of medicine. 19th ed. Philadelphia: WB Saunders; 1992. p. 1530–5.

    Google Scholar 

  2. Korn JH. Immunological aspects of scleroderma. Curr Opin Rheumatol. 1991;3:947–52.

    Article  CAS  PubMed  Google Scholar 

  3. LeRoy EC. A brief overview of the pathogenesis of scleroderma (systemic sclerosis). Ann Rheum Dis. 1992;51:286–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ihn H. Pathogenesis of fibrosis: role of TGF-β and CTGF. Curr Opin Rheumatol. 2002;14:681–5.

    Article  CAS  PubMed  Google Scholar 

  5. Ihn H. The role of TGF-β signaling in the pathogenesis of fibrosis in scleroderma. Arch Immunol Ther Exp. 2002;50:325–31.

    CAS  Google Scholar 

  6. Ihn H. Scleroderma, fibroblasts, signaling, and excessive extracellular matrix. Curr Rheumatol Rep. 2005;7:156–62.

    Article  CAS  PubMed  Google Scholar 

  7. Ihn H. Autocrine TGF-β signaling in the pathogenesis of systemic sclerosis. J Invest Dermatol. 2008;49:103–13.

    CAS  Google Scholar 

  8. Clark RA. Cutaneous tissue repair: basic biological considerations. J Am Acad Dermatol. 1985;13:701–25.

    Article  CAS  PubMed  Google Scholar 

  9. Border WA, Ruoslahti E. Transforming growth factor-β: the dark side of tissue repair. J Clin Invest. 1992;90:1–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gospodarowicz D, Moran JS. Mitogenic effect of fibroblast growth factor on early passage cultures of human murine fibroblasts. J Cell Biol. 1975;66:451–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen S, Carpenter G. Human epidermal growth factor: isolation and chemical and biological properties. Proc Natl Acad Sci U S A. 1975;72:1317–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rutherford RB, Ross R. Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate. J Cell Biol. 1976;69:196–203.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Beutler B, Cerami A. Cathectin and tumor necrosis factor as two sides of the same biological coin. Nature. 1986;320:584–8.

    Article  CAS  PubMed  Google Scholar 

  14. Postlethwaite AE, Holness MA, Katai H, Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix protein in response to interleukin 4. J Clin Invest. 1992;90:1479–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Duncun MR, Berman B. Differential regulation of collagen, glycosaminoglycan, fibronectin and collagenase activity production in cultured human adult dermal fibroblasts by interleukin 1-α and β and tumor necrosis factor-α and β. J Invest Dermatol. 1989;92:699–706.

    Article  Google Scholar 

  16. Duncun MR, Berman B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J Invest Dermatol. 1991;97:686–92.

    Article  Google Scholar 

  17. Ihn H, Tamaki K. Oncostatin M stimulates the growth of dermal fibroblasts via a mitogen-activated protein kinase-dependent pathway. J Immunol. 2000;165:2149–55.

    Article  CAS  PubMed  Google Scholar 

  18. Jinnin M, Ihn H, Yamane K, Tamaki K. Interleukin-13 stimulates the transcription of the human α2(I) collagen gene in human dermal fibroblasts. J Biol Chem. 2004;279:41783–91.

    Article  CAS  PubMed  Google Scholar 

  19. Kulozik M, Hogg A, Lankat-Buttgereit B, Kreig T. Co-localization of transforming growth factor β2 with α1(I) procollagen mRNA in tissue sections of patients with systemic sclerosis. J Clin Invest. 1990;86:917–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jelaska A, Arakawa M, Broketa G, Korn JH. Heterogeneity of collagen synthesis in normal and systemic sclerosis skin fibroblasts: increased proportion of high collagen-producing cells in systemic sclerosis fibroblasts. Arthritis Rheum. 1996;39:1338–46.

    Article  CAS  PubMed  Google Scholar 

  21. LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vivo. J Clin Invest. 1974;54:880–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Peltonen J, Kahari L, Uitto J, Jimenez SA. Increased expression of type VI collagen genes in systemic sclerosis. Arthritis Rheum. 1990;33:1829–35.

    Article  CAS  PubMed  Google Scholar 

  23. Xu W, LeRoy EC, Smith EA. Fibronectin release by systemic sclerosis and normal dermal fibroblasts in response to TGF-β. J Rheumatol. 1991;18:241–6.

    CAS  PubMed  Google Scholar 

  24. Ludnica L, Varga J, Christiano AM, Iozzo RV, Jimenez SA, Uitto J. Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. Regulation by transforming growth factor-β. J Clin Invest. 1994;93:1709–15.

    Article  Google Scholar 

  25. Falanga V, Tiegs SL, Alstadt SP, Roberts AB, Sporn MB. Transforming growth factor β: selective increase in glycosaminoglycan synthesis by cultures of fibroblasts from patients with progressive systemic sclerosis. J Invest Dermatol. 1987;89:100–4.

    Article  CAS  PubMed  Google Scholar 

  26. Ihn H, Tamaki K. Increased phosphorylation of transcription factor Sp1 in scleroderma fibroblasts: association with increased expression of type I collagen gene. Arthritis Rheum. 2000;43:2240–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ihn H, Yamane K, Kubo M, Tamaki K. Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum. 2001;44:474–80.

    Article  CAS  PubMed  Google Scholar 

  28. Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane TK. Epidermal growth factor induces fibronectin expression in human dermal fibroblasts via protein kinase C δ signaling pathway. J Invest Dermatol. 2004;122:1390–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kirk TZ, Mark ME, Chua CC, Chau BH, Mayers MD. Myofibroblasts from scleroderma skin synthesize elevated levels of collagen and tissue inhibitor of metalloproteinase (TIMP-1) with two forms of TIMP-1. J Biol Chem. 1995;270:3423–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ihn H, Sato S, Fujimoto M, Kikuchi K, Kadono T, Tamaki T, Tamaki K, Takehara K. Circulating intercellular adhesion molecule-1 in the sera of patients with systemic sclerosis: enhancement by inflammatory cytokines. Br J Rheumatol. 1997;36:1270–5.

    Article  CAS  PubMed  Google Scholar 

  31. Duncan MA, Hasan A, Berman B. Oncostatin M stimulates collagen and glycosaminoglycan production by cultured normal dermal fibroblasts: insensitivity of sclerodermal and keloidal fibroblasts. J Invest Dermatol. 1995;104:128–33.

    Article  CAS  PubMed  Google Scholar 

  32. Lee KS, Ro YJ, Ryoo YW, Kwon HJ, Song JY. Regulation of interleukin-4 on collagen gene expression by systemic sclerosis fibroblasts in culture. J Dermatol Sci. 1996;12:110–7.

    Article  CAS  PubMed  Google Scholar 

  33. Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T, Masuguchi S, Fukushima S, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol. 2012;188:3573–83.

    Article  CAS  PubMed  Google Scholar 

  34. Massague J. The transforming growth factor-β family. Annu Rev Cell Biol. 1990;6:597–641.

    Article  CAS  PubMed  Google Scholar 

  35. LeRoy EC, Smith EA, Kahaleh MB, Trojanowska M, Silver RM. A strategy for determining the pathogenesis of systemic sclerosis: is transforming growth factor β the answer? Arthritis Rheum. 1989;32:817–25.

    CAS  PubMed  Google Scholar 

  36. Massague J. TGF-β signal transduction. Ann Rev Biochem. 1998;67:753–91.

    Article  CAS  PubMed  Google Scholar 

  37. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development. 1997;124:2659–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Proetzel G, Pawlowski SA, Wiles MV, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T. Transforming growth factor-β3 is required for secondary palate fusion. Nat Genet. 1995;11:409–14.

    Article  CAS  PubMed  Google Scholar 

  40. Needleman BW, Choi J, Burrows-Menzu A, Fontana JA. Secretion and binding of transforming growth factor β by scleroderma and normal dermal fibroblasts. Arthritis Rheum. 1990;33:650–3.

    Article  CAS  PubMed  Google Scholar 

  41. Wrana JL, Attisano L, Weisser R, Ventura F, Massague J. Mechanism of activation of the TGF-β receptor. Nature. 1994;370:341–7.

    Article  CAS  PubMed  Google Scholar 

  42. Saitoh M, Nishitoh H, Amagasa T, Miyazono K, Takagi M, Ichijo H. Identification of important regions in the cytoplasmic juxtamembrane domain of type I receptor that separate signaling pathways of transforming growth factor-β. J Biol Chem. 1996;271:2769–75.

    Article  CAS  PubMed  Google Scholar 

  43. Kawakami T, Ihn H, Xu W, Smith E, LeRoy EC, Trojanowska M. Increased expression of TGF-β receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-β signaling to scleroderma phenotype. J Invest Dermatol. 1998;110:47–51.

    Article  CAS  PubMed  Google Scholar 

  44. Kubo M, Ihn H, Yamane K, Tamaki K. Up-regulated expression of transforming growth factor β receptors in dermal fibroblasts in skin sections from patients with localized scleroderma. Arthritis Rheum. 2001;44:731–4.

    Article  CAS  PubMed  Google Scholar 

  45. Roulot D, Sevcsik AM, Coste T, Strosberg AD, Marullo S. Role of transforming growth factor-β type II receptor in hepatic fibrosis: studies of human chronic hepatitis C and experimental fibrosis in rats. Hepatology. 1999;29:1730–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kubo M, Ihn H, Yamane K, Tamaki K. Upregulated expression of transforming growth factor-β receptors in dermal fibroblasts of skin sections from patients with systemic sclerosis. J Rheumatol. 2002;29:2558–64.

    CAS  PubMed  Google Scholar 

  47. Yamane K, Ihn H, Kubo M, Tamaki K. Increased transcriptional activities of transforming growth factor β receptors in scleroderma fibroblasts. Arthritis Rheum. 2002;46:2421–8.

    Article  CAS  PubMed  Google Scholar 

  48. Yamane K, Ihn H, Tamaki K. Epidermal growth factor up-regulates expression of transforming growth factor TGF-β receptor type II in human dermal fibroblasts by phosphoinositide 3-kinase/Akt signaling pathway: resistance to epidermal growth factor stimulation in scleroderma fibroblasts. Arthritis Rheum. 2003;48:1652–66.

    Article  CAS  PubMed  Google Scholar 

  49. Yamane K, Ihn H, Asano Y, Jinnin M, Tamaki K. Antagonistic effects of TNF-α on TGF-β signaling through down-regulation of TGF-β receptor type II in human dermal fibroblasts. J Immunol. 2003;171:3855–62.

    Article  CAS  PubMed  Google Scholar 

  50. Bloom BB, Humphries DE, Kuang PP, Fine A, Goldstein RH. Structure and expression of the promoter for the R4/ALK5 human type I transforming growth factor-β receptor: regulation by TGF-β. Biochim Biophys Acta. 1996;1312:243–8.

    Article  PubMed  Google Scholar 

  51. Czuwara-Ladykowska J, Gore EA, Shegogue DA, Smith EA, Trojanowska M. Differential regulation of transforming growth factor-β receptors type I and type II by platelet-derived growth factor in human dermal fibroblasts. Br J Dermatol. 2001;145:569–75.

    Article  CAS  PubMed  Google Scholar 

  52. Leask A, Abraham DJ, Finlay DR, Holmes A, Pennington D, Shi-Wen X, Chen Y, Venstrom K, Dou X, Ponticos M, et al. Dysregulation of transforming growth factor-β signaling in scleroderma: overexpression of endoglin in cutaneous scleroderma fibroblasts. Arthritis Rheum. 2002;46:1857–65.

    Article  CAS  PubMed  Google Scholar 

  53. Pannu J, Gore-Hyer E, Yamanaka M, Smith EA, Rubinchik S, Dong JY, Jablonska M, Blaszczyk M, Trojanowska M. An increased transforming growth factor β receptor type I: type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor β receptor type II in scleroderma. Arthritis Rheum. 2004;50:1566–77.

    Article  CAS  PubMed  Google Scholar 

  54. Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockade of type β transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci U S A. 1999;96:2345–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Trojanowska M, Smith E, Dong JY, Gore E. Overexpression of a kinase-deficient TGFβ receptor II via an adenoviral vector potently inhibits extracellular matrix production in scleroderma and normal dermal fibroblasts. Arthritis Rheum. 1999;42:S203.

    Google Scholar 

  56. Massague J, Chen YG. Controlling TGF-β signaling. Genes Dev. 2000;14:627–44.

    CAS  PubMed  Google Scholar 

  57. Shi Y, Hata A, Lo RS, Massague J, Pavletich NP. A structure basis for mutational inactivation of the tumor suppressor Smad4. Nature. 1997;388:87–93.

    Article  CAS  PubMed  Google Scholar 

  58. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998;1:611–7.

    Article  CAS  PubMed  Google Scholar 

  59. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. Smad6 inhibits signaling by the TGF- β superfamily. Nature. 1997;389:622–6.

    Article  CAS  PubMed  Google Scholar 

  60. Hocevar B, Brown TL, Howe PH. TGFβ induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 1999;18:1345–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Verrecchia F, Chu ML, Mauviel A. Identification of novel TGFβ/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem. 2001;276:17058–62.

    Article  CAS  PubMed  Google Scholar 

  62. Ihn H, Ohnishi K, Tamaki T, LeRoy EC, Trojanowska M. Transcriptional regulation of the human α2(I) collagen gene: combined action of upstream stimulatory and inhibitory cis-acting element. J Biol Chem. 1996;271:26717–23.

    Article  CAS  PubMed  Google Scholar 

  63. Ihn H, LeRoy EC, Trojanowska M. Oncostatin M stimulates transcription of the human α2(I) collagen gene via the Sp1/Sp3-binding site. J Biol Chem. 1997;272:24666–72.

    Article  CAS  PubMed  Google Scholar 

  64. Ihn H, Trojanowska M. Sp3 is a transcriptional activator of the human α2(I) collagen gene. Nucleic Acids Res. 1997;25:3712–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ihn H, Tamaki K. Competition analysis of the human α2(I) collagen promoter using synthetic oligonucleotides. J Invest Dermatol. 2000;114:1011–6.

    Article  CAS  PubMed  Google Scholar 

  66. Ihn H, Ihn Y, Trojanowska M. Sp1 phosphorylation induced by serum stimulates the human α2(I) collagen gene. J Invest Dermatol. 2001;117:301–8.

    Article  CAS  PubMed  Google Scholar 

  67. Inagaki Y, Truter S, Ramirez F. Transforming growth factor-β stimulates α2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem. 1994;269:14828–34.

    CAS  PubMed  Google Scholar 

  68. Greenwel P, Inagaki Y, Hu W, Walsh M, Ramirez F. Sp1 is required for the early response of α2(I) collagen to transforming growth factor-β1. J Biol Chem. 1997;272:19738–45.

    Article  CAS  PubMed  Google Scholar 

  69. Chen SJ, Yuan W, Mori Y, Levenson A, Trojanowska M, Varga J. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad3. J Invest Dermatol. 1999;112:49–57.

    Article  CAS  PubMed  Google Scholar 

  70. Chen SJ, Yuan W, Lo S, Trojanowska M, Varga J. Interaction of Smad3 with proximal Smad-binding element of the human α2(I) collagen gene promoter required for transcriptional activation by TGF-β. J Cell Physiol. 2000;183:381–92.

    Article  CAS  PubMed  Google Scholar 

  71. Mori Y, Chen SJ, Varga J. Modulation of endogenous Smad expression in normal skin fibroblasts by transforming growth factor-β. Exp Cell Res. 2000;258:374–83.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang W, Ou J, Inagaki Y, Greenwel P, Ramirez F. Synergistic cooperation between Sp1 and Smad3/Smad4 mediates transforming growth factor-β1 stimulation of α2(I) collagen (COL1A2) transcription. J Biol Chem. 2000;275:39237–45.

    Article  CAS  PubMed  Google Scholar 

  73. Poncelet AC, Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-β1-induced α2(I) collagen expression in human glomerular mesangial cells. J Biol Chem. 2001;276:6983–92.

    Article  CAS  PubMed  Google Scholar 

  74. Inagaki Y, Nemoto T, Nakao A, ten Dijke P, Kobayashi K, Takehara K, Greenwel P. Interaction between GC box binding factors and Smad proteins modulates cell lineage-specific α2(I) collagen gene transcription. J Biol Chem. 2001;276:16573–9.

    Article  CAS  PubMed  Google Scholar 

  75. Ghosh AK, Yuan W, Mori Y, Varga J. Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-β involves functional cooperation with p300/CBP transcriptional coactivators. Oncogene. 2000;19:3546–55.

    Article  CAS  PubMed  Google Scholar 

  76. Ghosh AK, Yuan W, Mori Y, Chen SJ, Varga J. Antagonistic regulation of type I collagen gene expression by interferon-γ and transforming growth factor-β. Integration at the level of p300/CBP transcriptional coactivators. J Biol Chem. 2001;276:11041–8.

    Article  CAS  PubMed  Google Scholar 

  77. Czuwara-Ladykowska J, Sementchenko VI, Watson FK, Trojanowska M. Ets1 is an effector of the TGF-β signaling pathway and an antagonist of the profibrotic effects of TGF-β. J Biol Chem. 2002;277:20399–408.

    Article  CAS  PubMed  Google Scholar 

  78. Jinnin M, Ihn H, Asano Y, Yamane K, Trojanowska M, Tamaki K. Tenascin-C upregulation by transforming growth factor-β in human dermal fibroblasts involves Smad3, Sp1, and Ets1. Oncogene. 2004;23:1656–67.

    Article  CAS  PubMed  Google Scholar 

  79. Shirasaki F, Makhluf HA, LeRoy EC, Watson DK, Trojanowska M. Ets transcription factors cooperate with Sp1 to activate the human tenascin-C promoter. Oncogene. 1999;18:7754–64.

    Google Scholar 

  80. Czuwara-Ladykowska J, Shirasaki F, Jackers P, Watson DK, Trojanowska M. Fli-1 inhibits collagen type I production in human dermal fibroblasts via an Sp-dependent manner. J Biol Chem. 2001;15:20839–48.

    Article  Google Scholar 

  81. Trojanowska M. Ets factors and regulation of the extracellular matrix. Oncogene. 2000;18:6464–71.

    Article  CAS  Google Scholar 

  82. Yuan W, Varga J. Transforming growth factor-β repression of matrix metalloproteinase 1 in dermal fibroblasts involves Smad3. J Biol Chem. 2001;276:38502–10.

    Article  CAS  PubMed  Google Scholar 

  83. Flanders KC, Sullivan CD, Fujii M, Sowers A, Anzano MA, Arabshahi A, Major C, Deng C, Russo A, Mitchell JB, Roberts AB. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol. 2002;160:1057–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Zhao J, Shi W, Wang YL, Chen H, Bringas Jr P, Datto MB, Frederick JP, Wang XF, Warburton D. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002;282:585–93.

    Article  Google Scholar 

  85. Lee DK, Park SH, Yi Y, Choi SG, Lee C, Parks WT, Cho H, de Caestecker MP, Shual Y, Roberts AB, Kim SJ. The hepatitis B virus encoded oncoprotein pX amplifies TGF-β family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev. 2001;15:455–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Yang J, Zhang X, Li Y, Liu Y. Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplication mechanism for TGF-β1 signaling. J Am Soc Nephrol. 2003;14:3167–77.

    Article  CAS  PubMed  Google Scholar 

  87. Segar R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995;9:726–98.

    Google Scholar 

  88. Ihn H, Yamane K, Asano Y, Kubo M, Tamaki K. IL-4 up-regulates the expression of tissue inhibitor of metalloproteinase-2 in dermal fibroblasts via the p38 mitogen-activated protein kinase-dependent pathway. J Immunol. 2002;168:1895–902.

    Article  CAS  PubMed  Google Scholar 

  89. Ihn H, Yamane K, Tamaki K. Increased phosphorylation and activation of mitogen-activated protein kinase p38 in scleroderma fibroblasts. J Invest Dermatol. 2005;125:247–55.

    CAS  PubMed  Google Scholar 

  90. Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A. CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem. 2001;276:10594–601.

    Article  CAS  PubMed  Google Scholar 

  91. Mori Y, Chen SJ, Varga J. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum. 2003;48:1964–78.

    Article  CAS  PubMed  Google Scholar 

  92. Dong C, Zhu S, Wang T, Yoon W, Alvarez RJ, ten Dijke P, White B, Wigley FM, Goldschmidt-Clemont PJ. Deficient Smad7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci U S A. 2002;99:3908–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Impaired Smad7-Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Invest. 2004;113:253–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Janknecht R, Wells NJ, Hunter T. TGFβ stimulated cooperation of SMAD proteins with the coactivators CBP/p300. Genes Dev. 1998;12:2114–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Verrecchia F, Pessah M, Atfi A, Mauviel A. Tumor necrosis factor-α inhibits transforming growth factor-β/SMAD signaling in human dermal fibroblasts via AP-1 activation. J Biol Chem. 2000;275:30226–31.

    Article  CAS  PubMed  Google Scholar 

  96. Luo K, Stroschein SL, Wang W, Chen D, Martens Z, Zhou S, Zhou Q. The Ski oncoprotein interacts with the SMAD proteins to repress TGFβ signaling. Genes Dev. 1999;13:2196–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Sun Y, Liu X, Eaton EN, Lodish HF, Weinberg RA. SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor β signaling. Proc Natl Acad Sci U S A. 1999;96:12442–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Wotton D, Lo RS, Lee S, Massague J. A SMAD transcriptional corepressor. Cell. 1999;97:29–39.

    Article  CAS  PubMed  Google Scholar 

  99. Kim RH, Wang D, Tsang M, Martin J, Huff C, deCaestecker MP, Parks WT, Meng X, Lechleider RJ, Wang T, Roberts AB. A novel SMAD nuclear interacting protein, SNIP1, suppresses p300-dependent TGFβ signal transduction. Genes Dev. 2000;14:1605–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Jinnin M, Ihn H, Mimura Y, Asano Y, Tamaki K. Involvement of the constitutive complex formation of c-Ski/SnoN with Smads in the impaired negative feedback regulation of transforming growth factor b signaling in scleroderma fibroblasts. Arthritis Rheum. 2007;56:1694–705.

    Article  CAS  PubMed  Google Scholar 

  101. Ihn H. p38 MAP kinase inhibitors in dermatology. Exp Rev Dermatol. 2007;2:403–7.

    Article  CAS  Google Scholar 

  102. Reunanen N, Foschi M, Han J, Kahari VM. Activation of extracellular signal-regulated kinase 1/2 inhibits type I collagen expression by human skin fibroblasts. J Biol Chem. 2000;275:34634–9.

    Article  CAS  PubMed  Google Scholar 

  103. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  CAS  PubMed  Google Scholar 

  104. Toker A. Protein kinases as mediators of phosphoinositide 3-kinase signaling. Mol Pharmacol. 2000;57:652–8.

    CAS  PubMed  Google Scholar 

  105. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275:36803–10.

    Article  CAS  PubMed  Google Scholar 

  106. Runyan CE, Schnaper HW, Poncelet A-C. The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-β1. J Biol Chem. 2004;279:2632–9.

    Article  CAS  PubMed  Google Scholar 

  107. Tezuka T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor. Cell. 1998;95:779–91.

    Article  Google Scholar 

  108. Itoh F, Divecha N, Brocks L, Oomen L, Janssen H, Calafat J, Itoh S, ten Dijke P. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β/Smad signaling. Genes Cells. 2002;7:321–31.

    Article  CAS  PubMed  Google Scholar 

  109. Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Phosphatidylinositol 3-kinase is involved in α2(I) collagen gene expression in normal and scleroderma fibroblasts. J Immunol. 2004;172:7123–35.

    Article  CAS  PubMed  Google Scholar 

  110. Shegogou D, Trojanowska M. Mammalian target of rapamycin positively regulates collagen type I production via a phsphatidylinositol 3-kinase-independent pathway. J Biol Chem. 2004;279:23166–75.

    Article  CAS  Google Scholar 

  111. Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cystein-rich mitogen secreted by human vascular endothelial cells is related to the SRC induced immediate early gene product CEF-10. J Cell Biol. 1991;114:1285–94.

    Article  CAS  PubMed  Google Scholar 

  112. Igarashi A, Okochi H, Bradham DM, Grotendorst GR. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell. 1993;4:637–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Shinozaki M, Kawara S, Hayashi N, Kakinuma T, Igarashi A, Takehara K. Induction of subcutaneous tissue fibrosis in newborn mice by transforming growth factor β: simultaneous application with basic fibroblast growth factor causes persistant fibrosis. Biochem Biophys Res Commun. 1997;240:292–7.

    Article  CAS  PubMed  Google Scholar 

  114. Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K. Role and interaction of connective tissue growth factor with transforming growth factor β in persistant fibrosis: a mouse fibrosis model. J Cell Physiol. 1999;181:153–9.

    Article  CAS  PubMed  Google Scholar 

  115. Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Grotendorst GR, Takehara K. Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol. 1995;105:280–4.

    Article  CAS  PubMed  Google Scholar 

  116. Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Fujimoto M, Grotendorst GR, Takehara K. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol. 1996;106:723–33.

    Article  Google Scholar 

  117. Frazer K, Williams SKD, Klapper H, Grotendorst GR. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol. 1996;107:404–11.

    Article  Google Scholar 

  118. Paradis V, Dargere D, Vidaud M, De Gouville AC, Huet S, Martinez V, Gauthier JM, Sobesky R, Ratziu V, Bedossa P. Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology. 1999;30:968–76.

    Article  CAS  PubMed  Google Scholar 

  119. Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block LH. A preliminary study of long-term treatment with interferon γ-1β and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 1999;341:1264–9.

    Article  CAS  PubMed  Google Scholar 

  120. Abou-Shady M, Freiss H, Zimmermann A, di Mola FF, Guo XZ, Baer HU, Buchler MW. Connective tissue growth factor in human liver cirrhosis. Liver. 2000;20:296–304.

    Article  CAS  PubMed  Google Scholar 

  121. Chen MM, Lam A, Abraham JA, Schreiner GF, Joly AH. CTGF expression is induced by TGF-β in cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol. 2000;32:1805–19.

    Article  CAS  PubMed  Google Scholar 

  122. Stratton R, Shiwen X, Martini G, Holmes A, Leask A, Haberberger T, Martin GR, Black CM, Abraham D. Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients. J Clin Invest. 2001;108:241–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Takehara K. Hypothesis: pathogenesis of systemic sclerosis. J Rheumatol. 2003;30:755–9.

    PubMed  Google Scholar 

  124. Gore-Hyer E, Pannu J, Smith EA, Grotendorst G, Trojanowska M. Selective stimulation of collagen synthesis in the presence of costimulatory insulin signaling by connective tissue growth factor in scleroderma fibroblasts. Arthritis Rheum. 2003;48:798–806.

    Article  CAS  PubMed  Google Scholar 

  125. Honda N, Jinnin M, Kajihara I, Makino T, Makino K, Masuguchi S, Fukushima S, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H. TGF-β-mediated down-regulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts. J Immunol. 2012;188:3323–31.

    Article  CAS  PubMed  Google Scholar 

  126. Sing T, Jinnin M, Yamane K, Honda N, Makino K, Kajihara I, Makino T, Sakai K, Masuguchi S, Fukushima S, Ihn H. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology. 2012;51:1550–6.

    Article  CAS  PubMed  Google Scholar 

  127. Makino K, Jinnin M, Hirano A, Yamane K, Eto M, Kusano T, Honda N, Kajihara I, Makino T, Sakai K, Masuguchi S, Fukushima S, Ihn H. The down-regulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J Immunol. 2012;190:3905–15.

    Article  CAS  Google Scholar 

  128. Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, Fukushima S, Inoue Y, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin β3. Am J Pathol. 2013;182:206–16.

    Article  CAS  PubMed  Google Scholar 

  129. Takeda K, Hatamochi A, Ueki H, Nakata M, Oishi Y. Decreased collagenase expression in cultured systemic sclerosis fibroblasts. J Invest Dermatol. 1994;103:359–63.

    Article  CAS  PubMed  Google Scholar 

  130. Sappino AP, Masouye I, Saurat JH, Gabbiani G. Smooth muscle differentiation in scleroderma fibroblastic cells. Am J Pathol. 1990;137:585–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Increased expression levels of integrin αvβ5 on scleroderma fibroblasts. Am J Pathol. 2004;164:1275–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Asano Y, Ihn H, Jinnin M, Tamaki K, Sato S. Altered dynamics of transforming growth factor β (TGF- β) receptors in scleroderma fibroblasts. Ann Rheum Dis. 2011;70:384–7.

    Article  CAS  PubMed  Google Scholar 

  133. Ihn H, Yamane K, Asano Y, Tamaki K. Constitutive phosphorylated Smad3 interacts with Sp1 and p300 in scleroderma fibroblasts. Rheumatology. 2006;45:157–65.

    Article  CAS  PubMed  Google Scholar 

  134. Jinnin M, Ihn H, Mimura Y, Asano Y, Tamaki K. Potential regulatory elements of the constitutive up-regulated α2(I) collagen gene in scleroderma dermal fibroblasts. Biochem Biophys Res Commun. 2006;343:904–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironobu Ihn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Ihn, H. (2016). Fibrosis: Overview. In: Takehara, K., Fujimoto, M., Kuwana, M. (eds) Systemic Sclerosis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55708-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55708-1_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55707-4

  • Online ISBN: 978-4-431-55708-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics