Skip to main content

Nanowires for Renewable Energy

  • Chapter
  • First Online:
High-Energy Charged Particles

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 401 Accesses

Abstract

Organic photovoltaics have emerged as a viable candidate for producing renewable energy. In this chapter, fabrication of fullerene nanowire by SPNT and hybridization with bulk heterojunction architecture are reviewed. Formation of fullerene nanowire itself is a remarkable milestone in SPNT, since this is the first example of molecule-based nanowires other than the previous polymer-based nanowires. Interestingly, fullerene nanowires display a more straight shape and circular cross section than those of polymers, due to the strong mechanical strength and tolerance for a swell during development process. By controlling the density and length of nanowires, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and indene-C60 bis adducts (ICBA) nanowires were found to improve the power conversion efficiencies of the corresponding poly(3-hexylthiophene) (P3HT)-based solar cell by approximately 10–20 %. Heterojunction nanowires composed of p-type polymer and n-type fullerene are formed and observed by atomic force microscopy, where each p/n component is clearly visualized by the difference in shape and radius.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.D. Dimitrov, J.R. Durrant, Chem. Mater. 26, 616 (2014)

    Article  CAS  Google Scholar 

  2. A.J. Heeger, Adv. Mater. 26, 10 (2014)

    Article  CAS  Google Scholar 

  3. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, Y. Yang, Adv. Mater. 25, 6642 (2013)

    Article  CAS  Google Scholar 

  4. R.A.J. Janssen, J. Nelson, Adv. Mater. 25, 1847 (2013)

    Article  CAS  Google Scholar 

  5. G. Li, R. Zhu, Y. Yang, Nat. Photon. 6, 153 (2012)

    Article  CAS  Google Scholar 

  6. F. He, L. Yu, J. Phys. Chem. Lett. 2, 3102 (2011)

    Article  CAS  Google Scholar 

  7. P.M. Beaujuge, J.M. Fréchet, J. Am. Chem. Soc. 133, 20009 (2011)

    Article  CAS  Google Scholar 

  8. P.-L.T. Boudreault, A. Najari, M. Leclerc, Chem. Mater. 23, 456 (2011)

    Article  CAS  Google Scholar 

  9. A.C. Arias, J.D. Mackenzie, I. McCulloch, J. Rivnary, A. Salleo, Chem. Rev. 110, 3 (2010)

    Article  CAS  Google Scholar 

  10. Y.J. Cheng, S.H. Yang, C.S. Hsu, Chem. Rev. 109, 5868 (2009)

    Article  CAS  Google Scholar 

  11. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics 23, 1 (2015)

    Article  Google Scholar 

  12. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789–1791 (1992)

    Article  Google Scholar 

  13. C.W. Isaacson, M. Kleber, J.A. Field, Environ. Sci. Technol. 43, 6463–6474 (2009)

    Article  CAS  Google Scholar 

  14. F. Giacalone, N. Martín, Chem. Rev. 106, 5136–5190 (2006)

    Article  CAS  Google Scholar 

  15. S.S. Babu, H. Mohwald, T. Nakanishi, Chem. Soc. Rev. 39, 4021–4035 (2010)

    Article  CAS  Google Scholar 

  16. Y. He, H.Y. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 132, 1377–1382 (2010)

    Article  CAS  Google Scholar 

  17. A.M. Nardes, A.J. Ferguson, J.B. Whitaker, B.W. Larson, R.E. Larsen, K. Maturová, P.A. Graf, O.V. Boltalina, S.H. Strauss, N. Kopidakis, Adv. Funct. Mater. 22, 4115–4127 (2012)

    Article  CAS  Google Scholar 

  18. C. Zhang, S. Chen, Z. Xiao, Q. Zuo, L. Ding, Org. Lett. 14, 1508–1511 (2012)

    Article  CAS  Google Scholar 

  19. K.-H. Kim, H. Kang, H.J. Kim, P.S. Kim, S.C. Yoon, B.J. Kim, Chem. Mater. 24, 2373–2381 (2012)

    Article  CAS  Google Scholar 

  20. H. Kang, C.-H. Cho, H.-H. Cho, T.E. Kang, H.J. Kim, K.-H. Kim, S.C. Yoon, B.J. Kim, ACS Appl. Mater. Interfaces 4, 110–116 (2012)

    Article  CAS  Google Scholar 

  21. Y. He, C. Chen, E. Richard, L. Dou, Y.G. Wu, Y. Lia, Y. Yang, J. Mater. Chem. 22, 13391–13394 (2012)

    Article  CAS  Google Scholar 

  22. S.A. Backer, K. Sivula, D.F. Kavulak, J.M.J. Fréchet, Chem. Mater. 19, 2927–2929 (2007)

    Article  CAS  Google Scholar 

  23. T. Mikie, A. Saeki, H. Masuda, N. Ikuma, K. Kokubo, S.J. Seki, Mater. Chem. A 3, 1152–1157 (2015)

    Article  CAS  Google Scholar 

  24. T. Mikie, A. Saeki, N. Ikuma, K. Kokubo, S. Seki, Chem. Lett. 44, 282–284 (2015)

    Google Scholar 

  25. S.H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photo. 3, 297–303 (2009)

    Article  CAS  Google Scholar 

  26. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 23, 4636–4643 (2011)

    Article  CAS  Google Scholar 

  27. C. Guo, Y.-H. Lin, M.D. Witman, K.A. Smith, C. Wang, A. Hexemer, J. Strzalka, E.D. Gomez, R. Verduzco, Nano Lett. 13, 2957–2963 (2013)

    Article  CAS  Google Scholar 

  28. K. Nakabayashi, H. Mori, Macromolecules 45, 9618–9625 (2012)

    Article  CAS  Google Scholar 

  29. S. Miyanishi, Y. Zhang, K. Tajima, K. Hashimoto, Chem. Commun. 46, 6723–6725 (2010)

    Article  CAS  Google Scholar 

  30. N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Leveque, J.N. Audinot, S. Berson, T. Heiser, G. Hadziioannou, R. Mezzenga, Adv. Mater. 22, 763–768 (2010)

    Article  CAS  Google Scholar 

  31. Q.L. Zhang, A. Cirpan, T.P. Russell, T. Emrick, Macromolecules 42, 1079–1082 (2009)

    Article  CAS  Google Scholar 

  32. Y.F. Tao, B. McCulloch, S. Kim, R.A. Segalman, Soft Matter 5, 4219–4230 (2009)

    Article  CAS  Google Scholar 

  33. D. Deribew, E. Pavlopoulou, G. Fleury, C. Nicolet, C. Renaud, S.-J. Mougnier, L. Vignau, E. Cloutet, C. Brochon, F. Cousin, G. Portale, M. Geoghegan, G. Hadziioannou, Macromolecules 46, 3015–3024 (2013)

    Article  CAS  Google Scholar 

  34. S. Moungthai, N. Mahadevapuram, P. Ruchhoeft, G. Stein, ACS Appl. Mater. Interfaces 4, 4015–4023 (2012)

    Article  CAS  Google Scholar 

  35. J. You, X. Li, F.-X. Xi, W.E.I. Sha, J.H.W. Kwong, G. Li, W.C.H. Choy, Y. Yang, Adv. Energy Mater. 2, 1203–1207 (2012)

    Article  CAS  Google Scholar 

  36. Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka, E. Nakamura, J. Am. Chem. Soc. 131, 16048–16049 (2009)

    Article  CAS  Google Scholar 

  37. X. Li, W.C.H. Choy, L. Huo, F. Xie, W.E.I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Adv. Mater. 24, 3046–3052 (2012)

    Article  CAS  Google Scholar 

  38. V. Jankovic, Y.M. Yang, J. You, L. Dou, Y. Liu, P. Cheung, J.P. Chang, Y. Yang, ACS Nano 7, 3815–3822 (2013)

    Article  CAS  Google Scholar 

  39. C.-C. Chen, L. Dou, R. Zhu, C.-H. Chung, T.-B. Song, Y.B. Zheng, S. Hawks, G. Li, P.S. Weiss, Y. Yang, ACS Nano 6, 7185–7190 (2012)

    Article  CAS  Google Scholar 

  40. S.M. Yoon, S.J. Lou, S. Loser, J. Smith, L.X. Chen, A. Facchetti, T. Marks, Nano Lett. 12, 6315–6321 (2012)

    Article  CAS  Google Scholar 

  41. S. Seki, K. Maeda, S. Tagawa, H. Kudoh, M. Sugimoto, Y. Morita, H. Shibata, Adv. Mater. 13, 1663–1665 (2001)

    Article  CAS  Google Scholar 

  42. S. Seki, A. Saeki, W. Choi, Y. Maeyoshi, M. Omichi, A. Asano, K. Enomoto, C. Vijayakumar, M. Sugimoto, S. Tsukuda, S. Tanaka, J. Phys. Chem. B 116, 12857–12863 (2012)

    Article  CAS  Google Scholar 

  43. Cheng, H.L., Tang, M.T., Tuchinda, W., Enomoto, K., Chiba, A., Saito, Y., Kamiya, T., Sugimoto, M., Saeki, A., Sakurai, T., Omichi, M., Sakamaki, D., Seki, S.: Adv. Mater. Interfaces 2, 1400450/1–9 (2015)

    Google Scholar 

  44. S. Tsukuda, S. Seki, S. Tagawa, M. Sugimoto, A. Idesaki, S. Tanaka, A. Oshima, Fabrication of nanowires using high-energy ion beams. J. Phys. Chem. B 108, 3407–3409 (2004)

    Article  CAS  Google Scholar 

  45. Maeyoshi, Y., Saeki, A., Suwa, S., Omichi, M., Marui, H., Asano, A., Tsukuda, S., Sugimoto, M., Kishimura, A., Kataoka, K., Seki, S.: Sci. Rep. 2, 600/1–6 (2012)

    Google Scholar 

  46. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162–163 (1985)

    Article  CAS  Google Scholar 

  47. J.C. Hummelen, B.W. Knight, F. LePeq, F. Wudl, J. Yao, C.L. Wilkins, J. Org. Chem. 60, 532–538 (1995)

    Article  CAS  Google Scholar 

  48. G. Zhao, Y. He, Y. Li, Adv. Mater. 22, 4355–4358 (2010)

    Article  CAS  Google Scholar 

  49. A.M. Rao, P. Zhou, K.-A. Wang, G.T. Hager, J.M. Holden, Y. Wang, W.-T. Lee, X.-X. Bi, P.C. Eklund, D.S. Cornett, M.A. Duncan, J. Amster, Science 259, 955–957 (1993)

    Article  CAS  Google Scholar 

  50. P. Zhou, Z.-H. Dong, A.M. Rao, P.C. Eklund, Chem. Phys. Lett. 211, 337–340 (1993)

    Article  CAS  Google Scholar 

  51. Y. Iwasa, T. Arima, R.M. Fleming, T. Siegrist, O. Zhou, R.C. Haddon, L.J. Rothberg, K.B. Lyons, H.L. CarterJr, A.F. Hebard, R. Tycko, G. Dabbagh, J.J. Krajewski, G.A. Thomas, T. Yagi, Science 264, 1570–1572 (1994)

    Article  CAS  Google Scholar 

  52. S. Malik, N. Fujita, P. Mukhopadhyay, Y. Goto, K. Kaneko, T. Ikeda, S. Shinkai, J. Mater. Chem. 17, 2454–2458 (2007)

    Article  CAS  Google Scholar 

  53. Seki, S., Tsukuda, S., Maeda, K., Matsui, Y., Saeki, A., Tagawa, S.: Phys. Rev. B 70, 144203/1–8 (2004)

    Google Scholar 

  54. W. Burlant, J. Neerman, V. Serment, J. Polym. Sci. 58, 491–500 (1962)

    Article  CAS  Google Scholar 

  55. W. Zhang, W. Jin, T. Fukushima, A. Saeki, S. Seki, T. Aida, Science 334, 340–343 (2011)

    Article  CAS  Google Scholar 

  56. C.-Y. Chang, C.-E. Wu, S.-Y. Chen, C. Cui, Y.-J. Cheng, C.-S. Hsu, Y.-L. Wang, Y. Li, Angew. Chem. Int. Ed. 123, 9558–9562 (2011)

    Article  Google Scholar 

  57. A. Bihlmeier, C.C.M. Samson, W. Klopper, ChemPhysChem 6, 2625–2632 (2005)

    Article  CAS  Google Scholar 

  58. T. Ren, B. Sun, Z. Chen, L. Qu, H. Yuan, X. Gao, S. Wang, R. He, R. Zhao, Y. Zhao, Z. Liu, X. Jing, J. Phys. Chem. B 111, 6344–6348 (2007)

    Article  CAS  Google Scholar 

  59. A. Saeki, Y. Koizumi, T. Aida, S. Seki, Acc. Chem. Res. 45, 1193–1202 (2012)

    Article  CAS  Google Scholar 

  60. T.J. Savenije, D.H.K. Murthy, M. Gunz, J. Gorenflot, L.D.A. Siebbeles, V. Dyakonov, C. Deibel, J. Phys. Chem. Lett. 2, 1368–1371 (2011)

    Article  CAS  Google Scholar 

  61. F.C. Grozema, L.D.A. Siebbeles, J. Phys. Chem. Lett. 2, 2951–2958 (2011)

    Article  CAS  Google Scholar 

  62. Kumar, A., Avasthi, D. K., Tripathi, A., Kabiraj, D., Singh, F., Pivin J.C.: J. Appl. Phys. 101, 014308/1–5 (2007)

    Google Scholar 

  63. S. Suwa, Y. Maeyoshi, S. Tsukuda, M. Sugimoto, A. Saeki, S.J. Seki, Photopolym. Sci. Tech. 26, 193–197 (2013)

    Article  CAS  Google Scholar 

  64. Orimo, A., Masuda, K., Honda, S., Benten, H., Ito, S., Ohkita, H., Tsuji, H.: Appl. Phys. Lett. 96, 043305/1–3 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Seki .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Seki, S., Sakurai, T., Omichi, M., Saeki, A., Sakamaki, D. (2015). Nanowires for Renewable Energy. In: High-Energy Charged Particles. SpringerBriefs in Molecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55684-8_6

Download citation

Publish with us

Policies and ethics