Skip to main content

A Comparative Zoogeographic View on the Animal Biodiversity of Indonesia and Japan

  • Chapter
  • 2090 Accesses

Abstract

The Indonesian Archipelago harbors unique fauna with a high level of species diversity and endemism. In this report, we provide basic information on the spatial and temporal aspects of the animal ecosystem in the Indonesian Islands. We discuss four zoogeographic topics, including (1) lineage dispersal events from the continents to the Islands, (2) speciation processes in the insular area, (3) accelerated phenotypic evolution and (4) human impact on commensal animals compared to previous cases in the Japanese Archipelago, in which the same eustatic geological events and global climatic changes have occurred.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achmadi AS, Esselstyn JA, Rowe KC, Maryanto I, Abdullah MT (2013) Phylogeny, diversity, and biogeography of the Southeast Asian endemic spiny rats. J Mammal 94:1412–1423. doi:http://dx.doi.org/10.1644/13-MAMM-A-092.1. Accessed 21 Feb 2014

    Article  Google Scholar 

  • Aplin KP, Suzuki H, Chinen AA, Chesser RT, ten Have J, Donnellan SC et al (2011) Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS One 6, e26357. doi:10.1371/journal.pone.0026357

    Article  Google Scholar 

  • Astuti D, Azuma N, Suzuki H, Higashi S (2006) Phylogenetic relationships within parrots (Psittacidae) inferred from mitochondrial cytochrome-b gene sequences. Zool Sci 23:191–198. doi:http://dx.doi.org/10.2108/zsj.23.191. Accessed May 5 2013

    Article  Google Scholar 

  • Berggren WA, Kent DV, Swisher ICC, Aubry MP (1995) A revised geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubry MP, Hardenbol J (eds) Geochronology, time scales and global stratigraphic correlation. Society of Economic Paleontologists and Mineralogists Special Publication, Tulsa, Oklahoma, USA, vol 54, pp 129–212. doi:10.2110/pec.95.04.0129

    Google Scholar 

  • Bonhomme F, Searle JB (2012) House mouse phylogeography. In: Macholán M, Baird SJE, Munclinger P, Piálek J (eds) Evolution of the house mouse, Cambridge series in morphology and molecules. Cambridge University Press, Cambridge, pp 278–296

    Chapter  Google Scholar 

  • Byrne M, Steane DA, Joseph L, Yeates DK, Jordan GJ, Crayn D, Aplin K, Cantrill DJ, Cook LG, Crisp MD et al (2011) Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J Biogeogr 38:1636–1656. doi:10.1111/j.1365-2699.2011.02535.x

    Article  Google Scholar 

  • Carleton MD, Musser GG (2005) Order Rodentia. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, vol 2, 3rd edn. Johns Hopkins University Press, Baltimore, pp 745–752

    Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158. doi:10.1038/38229

    Article  Google Scholar 

  • Einarsson T, Albertsson KJ (1988) The glacial history of Iceland during the past three million years. Philos Trans R Soc Lond 318:637–644. doi:10.1098/rstb.1988.0027

    Article  Google Scholar 

  • Esselstyn JA, Timm RM, Brown RM (2009) Do geological or climatic processes drive speciation in dynamic archipelagos? The tempo and mode of diversification in Southeast Asian shrews. Evolution 63:2595–2610. doi:10.1111/j.1558-5646.2009.00743.x

    Article  Google Scholar 

  • Esselstyn JA, Achmadi AS, Rowe KC (2012) Evolutionary novelty in a rat with no molars. Biol Lett 8:990–993. doi:10.1098/rsbl.2012.0574

    Article  Google Scholar 

  • Esselstyn JA, Maharadatunkamsi AAS, Siler CD, Evans BJ (2013) Carving out turf in a biodiversity hotspot: multiple, previously unrecognized shrew species co-occur on Java Island, Indonesia. Mol Ecol 22:4972–4987. doi:10.1111/mec.12450

    Article  Google Scholar 

  • Evans BJ, Supriatna J, Andayani N, Melnick DJ (2003) Diversification of Sulawesi macaque monkeys: decoupled evolution of mitochondrial and autosomal DNA. Evolution 57:1931–1946. doi:10.1111/j.0014-3820.2003.tb00350.x

    Article  Google Scholar 

  • Gorog AJ, Sinaga MH, Engstrom MD (2004) Vicariance or dispersal? Historical biogeography of three Sunda shelf murine rodents (Maxomys surifer, Leopoldamys sabanus and Maxomys whiteheadi). Biol J Linn Soc Lond 81:91–109. doi:10.1111/j.1095-8312.2004.00281.x

    Article  Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20:353–431. doi:http://dx.doi.org/10.1016/S1367-9120(01)00069-4. Accessed 5 May 2013

    Article  Google Scholar 

  • Hall R (2012) Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571:1–41. doi:http://dx.doi.org/10.1016/j.tecto.2012.04.021. Accessed 5 May 2013

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167. doi:10.1126/science.235.4793.1156

    Article  Google Scholar 

  • Hosoda T, Sato JJ, Shimada T, Campbell KL, Suzuki H (2005) Independent nonframeshift deletions in the MC1R gene are not associated with melanistic coat coloration in three mustelid lineages. J Hered 96:607–613. doi:10.1093/jhered/esi096

    Article  Google Scholar 

  • Hosoda T, Sato JJ, Lin L-K, Chen Y-J, Harada M, Suzuki H (2011) Phylogenetic history of mustelid fauna in Taiwan inferred from mitochondrial genetic loci. Can J Zool 89:559–569. doi:10.1139/z11-029

    Article  Google Scholar 

  • Jansa SA, Barker FK, Heaney LR (2006) The pattern and timing of diversification of Phillippine endemic rodents: evidence from mitochondrial and nuclear gene sequences. Syst Biol 55:73–88. doi:10.1080/10635150500431254

    Article  Google Scholar 

  • Kambe Y, Tanikawa T, Matsumoto Y, Tomozawa M, Aplin KP, Suzuki H (2011) Origin of agouti-melanistic polymorphism in wild Black Rats (Rattus rattus) inferred from Mc1r gene sequences. Zool Sci 28:560–567. doi:http://dx.doi.org/10.2108/zsj.28.560. Accessed 5 May 2013

    Article  Google Scholar 

  • Kambe Y, Nakata K, Yasuda SP, Suzuki H (2012) Genetic characterization of Okinawan black rats showing coat color polymorphisms of white spotting and melanism. Genes Genet Syst 87:29–38. doi:http://dx.doi.org/10.1266/ggs.87.29. Accessed 30 June 2014

    Article  Google Scholar 

  • Kambe Y, Suzuki S, Yabe T, Nakata K, Maezono Y, Abe S, Ishida K, Tanikawa T, Hashimoto T, Takeda M, Tsuchiya K, Yoshimatsu K, Suzuki H (2013) Introgressive hybridization of two major lineages of invasive Black Rats, Rattus rattus and R. tanezumi on the Japanese Islands inferred from Mc1r sequences. Honyurui Kagaku Mamm Sci 53:289–299, (in Japanese with English summary). doi:http://dx.doi.org/10.11238/mammalianscience.53.289. Accessed 30 June 2014

    Google Scholar 

  • Khush GS (1997) Origin dispersal cultivation and variation of rice. Plant Mol Biol 35:25–34. doi:10.1007/978-94-011-5794-0_3

    Article  Google Scholar 

  • Kirihara T, Shinohara A, Tsuchiya K, Harada M, Kryukov AP, Suzuki H (2013) Spatial and temporal aspects of Mogera species occurrence in the Japanese Islands inferred from mitochondrial and nuclear gene sequences. Zool Sci 30:267–281. doi:http://dx.doi.org/10.2108/zsj.30.267. Accessed 5 May 2013

    Article  Google Scholar 

  • Kitamura A, Kimoto K (2006) History of the inflow of the warm Tsushima current into the sea of Japan between 35 and 08 Ma. Palaeogeogr Palaeoclimatol Palaeoecol 236:355–366. doi:http://dx.doi.org/10.1016/j.palaeo.2005.11.015. Accessed 5 May 2013

    Article  Google Scholar 

  • Lohman DJ, Ingram KK, Prawiradilaga DM, Winder K, Sheldon FH et al (2010) Cryptic genetic diversity in “widespread” Southeast Asian bird species suggests that Philippine avian endemism is gravely underestimated. Biol Conserv 143:1885–1890. doi:http://dx.doi.org/10.1016/j.biocon.2010.04.042. Accessed 5 May 2013

    Article  Google Scholar 

  • Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PKL, Shih H-T, Carvalho GR, von Rintelen T (2011) Biogeography of the Indo-Australian archipelago. Annu Rev Ecol Evol Syst 42:205–226. doi:10.1146/annurev- ecolsys-102710-145001

    Article  Google Scholar 

  • Maryanto I, Yani M (2003) A new species of Rousettus (Chiroptera: Pteropodidae) from Lore Lindu, Central Sulawesi. Mamm Study 28:111–120. doi:http://dx.doi.org/10.3106/mammalstudy.28.111. Accessed 5 May 2013

    Article  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (2004) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  Google Scholar 

  • Nakayama K, Shotake T, Takenaka O, Ishida T (2008) Variation of the melanocortin 1 receptor gene in the macaques. Am J Primatol 70:778–785. doi:10.1002/ajp.20547

    Article  Google Scholar 

  • Nunome M, Ishimori C, Aplin KP, Yonekawa H, Moriwaki K, Suzuki H (2010) Detection of recombinant haplotypes in wild mice (Mus musculus) provides new insights into the origin of Japanese mice. Mol Ecol 19:2474–2489. doi:10.1111/j.1365-294X.2010.04651.x

    Google Scholar 

  • Pagès M, Chaval Y, Herbreteau V, Waengsothorn S, Cosson JF, Hugot JP, Morand S, Michaux J (2010) Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol Biol 10:184. doi:10.1186/1471-2148-10-184

    Article  Google Scholar 

  • Randall JE (1998) Zoogeography of shore fishes of the Indo-Pacific region. Zool Stud 37:227–268

    Google Scholar 

  • Robins JH, Hingston M, Matisoo-Smith E, Ross HA (2007) Identifying Rattus species using mitochondrial DNA. Mol Ecol Notes 7:717–729. doi:10.1111/j.1471-8286.2007.01752.x

    Article  Google Scholar 

  • Rowe KC, Reno ML, Richmond DM, Adkins RM, Steppan SJ (2008) Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae). Mol Phylogenet Evol 47:84–101. doi:http://dx.doi.org/10.1016/j.ympev.2008.01.001. Accessed 5 May 2013

    Article  Google Scholar 

  • Rowe KC, Aplin KP, Baverstock PR, Moritz C (2011) Recent and rapid speciation with limited morphological disparity in the genus rattus. Syst Biol 60:188–203. doi:10.1093/sysbio/syq092

    Article  Google Scholar 

  • Rowe KC, Achmadi AS, Esselstyn JA (2014) Convergent evolution of semi-aquatic carnivory in a new genus and species (Rodentia: Muridae) from Wallacea. Zootaxa 3815:541–564. doi:http://dx.doi.org/10.11646/zootaxa.3815.4.5. Accessed 30 June 2014

    Article  Google Scholar 

  • Sato JJ, Wolsan M, Minami S, Hosoda T, Sinaga MH, Hiyama K, Yamaguchi Y, Suzuki H (2009) Deciphering and dating the red panda’s ancestry. Mol Phylogenet Evol 53:907–922. doi:http://dx.doi.org/10.1016/j.ympev.2009.08.019. Accessed 5 May 2013

    Article  Google Scholar 

  • Serizawa K, Suzuki H, Tsuchiya K (2000) A phylogenetic view on species radiation in Apodemus inferred from variation of nuclear and mitochondrial genes. Biochem Genet 38:27–40. doi:10.1023/A:1001828203201

    Article  Google Scholar 

  • Shimada T, Aplin K, Jogahara T, Lin KL, Gonzalez JP, Herbreteau V, Suzuki H (2007) Complex phylogeographic structuring in a continental small mammal from East Asia, the rice field mouse, Mus caroli (Rodentia, Muridae). Mamm Study 32:49–62. doi:http://dx.doi.org/10.3106/1348-6160(2007)32[49:CPSIAC]2.0.CO;2. Accessed 5 May 2013

    Article  Google Scholar 

  • Shimada T, Sato JJ, Aplin KP, Suzuki H (2009) Comparative analysis of evolutionary modes in Mc1r coat color gene in wild mice and mustelids. Genes Genet Syst 84:225–231. doi:http://dx.doi.org/10.1266/ggs.84.225. Accessed 5 May 2013

    Article  Google Scholar 

  • Shinohara A, Suzuki H, Tsuchiya K, Zhang YP, Luo J, Jiang XY, Wang YX, Campbell KL (2004) Evolution and biogeography of talpid moles from continental East Asia and the Japanese Islands inferred from mitochondrial and nuclear gene sequences. Zool Sci 21:1177–1185. doi:http://dx.doi.org/10.2108/zsj.21.1177. Accessed 5 May 2013

    Article  Google Scholar 

  • Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19:654–660. doi:http://dx.doi.org/10.1016/j.tree.2004.09.006. Accessed 30 June 2014

    Article  Google Scholar 

  • Stelbrink B, Albrecht C, Hall R, von Rintelen T (2012) The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace’s “anomalous island”? Evolution 66:2252–2271

    Article  Google Scholar 

  • Steppan SJ, Adkins RM, Spinks PQ, Hale C (2005) Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Mol Phylogenet Evol 37:370–388. doi:http://dx.doi.org/10.1016/j.ympev.2005.04.016. Accessed 5 May 2013

    Article  Google Scholar 

  • Suyanto A, Yoneda M, Maryanto I, Maharadatunkamsi SJ (2002) Checklist of the mammals of Indonesia. Scientific name and distribution area table in Indonesia including CITES, IUCN and Indonesian category for conservation. LIPI-JICA-PHKA, Bogor

    Google Scholar 

  • Suzuki H (2009) A molecular phylogenetic view of mammals in the “three-story museum” of Hokkaido, Honshu, and Ryukyu Islands, Japan. In: Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T (eds) The wild mammals of Japan. Shoukadoh, Kyoto, pp 261–263

    Google Scholar 

  • Suzuki H (2013) Evolutionary and phylogeographic views on Mc1r and Asip variation in mammals. Genes Genet Syst 88:155–164. doi:http://dx.doi.org/10.1266/ggs.88.155. Assessed 30 June 2014

    Article  Google Scholar 

  • Suzuki H, Aplin KP (2012) Phylogeny and biogeography of the genus Mus in Eurasia. In: Macholán M, Baird SJE, Munclinger P, Piálek J (eds) Evolution of the house mouse. Cambridge series in morphology and molecules. Cambridge University Press, Cambridge, pp 35–64

    Chapter  Google Scholar 

  • Suzuki H, Tsuchiya K, Takezaki N (2000) A molecular phylogenetic framework for the Ryukyu endemic rodents Tokudaia osimensis and Diplothrix legata. Mol Phylogenet Evol 15:15–24. doi:http://dx.doi.org/10.1006/mpev.1999.0732. Accessed 5 May 2013

    Article  Google Scholar 

  • Suzuki H, Sato JI, Tsuchiya K, Luo J, Zhang YP, Wang YX, Jiang XL (2003) Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biol J Linn Soc 80:469–481. doi:http://dx.doi.org/10.2108/zsj.21.1177. Accessed 5 May 2013

    Article  Google Scholar 

  • Suzuki H, Filippucci MG, Chelomina GN, Sato JJ, Serizawa K, Nevo E (2008) A biogeographic view of Apodemus in Asia and Europe inferred from nuclear and mitochondrial gene sequences. Biochem Genet 46:329–346. doi:10.1007/s10528-008-9149-7

    Article  Google Scholar 

  • Suzuki H, Nunome M, Kinoshita G, Aplin KP, Vogel P, Kryukov AP, Jin ML, Han SH, Maryanto I, Tsuchiya K, Ikeda H, Shiroishi T, Yonekawa H, Moriwaki K (2013) Evolutionary history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA. Heredity 111:375–390. doi:10.1038/hdy.2013.60

    Article  Google Scholar 

  • Terashima M, Furusawa S, Hanzawa N, Tsuchiya K, Suyanto A, Moriwaki K, Yonekawa H, Suzuki H (2006) Phylogeographic origin of Hokkaido house mice (Mus musculus) as indicated by genetic markers with maternal, paternal and biparental inheritance. Heredity 96:128–138. doi:10.1038/sj.hdy.6800761

    Article  Google Scholar 

  • Tsuchiya K, Suzuki H, Shinohara A, Harada M, Wakana S, Sakaizumi M, Han SH, Lin LK, Kryukov AP (2000) Molecular phylogeny of east Asian moles inferred from the sequence variation of the mitochondrial cytochrome b gene. Genes Genet Syst 75:17–24. doi:http://dx.doi.org/10.1266/ggs.75.17. Accessed 5 May 2013

    Article  Google Scholar 

  • Woodruff DS (2003) Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai–Malay Peninsula. J Biogeogr 30:551–567. doi:10.1046/j.1365-2699.2003.00846.x. Accessed 5 May 2013

    Article  Google Scholar 

  • Yamada F, Takaki M, Suzuki H (2002) Molecular phylogeny of Japanese Leporidae, the Amami rabbit Pentalagus furnessi, the Japanese hare Lepus brachyurus, and the mountain hare Lepus timidus, inferred from mitochondrial DNA sequences. Genes Genet Syst 77:107–116. doi:http://dx.doi.org/10.1266/ggs.77.107. Accessed 5 May 2013

    Article  Google Scholar 

  • Yonekawa H, Moriwaki K, Gotoh O, Miyashita N, Matsushima N et al (1988) Hybrid origin of Japanese mice “Mus musculus molossinus”: evidence from restriction analysis of mitochondrial DNA. Mol Biol Evol 5:63–78

    Google Scholar 

  • Yosida TH (1980) Cytogenetics of the black rat: karyotype evolution and species differentiation. University of Tokyo Press, Tokyo

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693. doi:10.1126/science.1059412

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Museum Zoologicum Bogoriense, Research Center for Biology – LIPI, especially Dwi Aswti, Ibnu Maryanto, Martua H. Sinaga and Agustinus Suyanto for their hospitality in the field investigation and valuable suggestions. We would also like to thank Alejandro A. Chinen, Seigo Higashi, Tomofumi Shimada and Hidenori Takahashi for their valuable comments. This study was supported in part by a Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science (JSPS) to H. S. (2440513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Suzuki, H., Achmadi, A.S. (2016). A Comparative Zoogeographic View on the Animal Biodiversity of Indonesia and Japan. In: Osaki, M., Tsuji, N. (eds) Tropical Peatland Ecosystems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55681-7_13

Download citation

Publish with us

Policies and ethics