Skip to main content

Microfluidic Organic Light-Emitting Devices Using Liquid Organic Semiconductors

  • Chapter
Organic Electronics Materials and Devices
  • 2761 Accesses

Abstract

Since a first liquid organic light-emitting diode (liquid OLED) was proposed by Xu and Adachi in 2009, liquid organic semiconductors have been considered to be promising materials for novel electronic device applications. Although the luminescent characteristics of liquid OLEDs have been improved over the past few years, from the viewpoint of device structure, there are technical challenges associated with multicolor light emissions on a single device. In general, liquid OLEDs are simply fabricated by sandwiching a liquid emitter between two electrode-patterned glass substrates, and the thickness of the emitting layer is controlled with single-μm-thick spacer materials. Therefore, the development of integration method for multiple liquid OLEDs on a single device is an important step toward next-generation liquid-based displays. This chapter provides a brief overview of the authors’ own recent researches on the microfluidic OLEDs which are novel liquid OLEDs combined with microfluidic technology. The following topics are discussed in this chapter: research background, fabrication methodologies for single-μm-thick electro-microfluidic devices using a novel exposure method and a heterogeneous bonding technique through the use of self-assembled monolayers, and demonstration of multicolor microfluidic OLEDs with the pyrene-based liquid organic semiconductors. The proposed microfluidic OLEDs are believed to open a new possibility for future liquid-based electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C.D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, Multi-colour organic light-emitting displays by solution processing. Nature 421, 829–833 (2003)

    Article  Google Scholar 

  2. H. Aziz, Z.D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, Degradation mechanism of small molecule-based organic light-emitting devices. Science 283, 1900–1902 (1999)

    Article  Google Scholar 

  3. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 23, 926–952 (2011)

    Article  Google Scholar 

  4. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009)

    Article  Google Scholar 

  5. B.W. D’Andrade, S.R. Forrest, White organic light-emitting devices for solid-state lighting. Adv. Mater. 16, 1585–1595 (2004)

    Article  Google Scholar 

  6. C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987)

    Article  Google Scholar 

  7. A. Pais, A. Banerjee, D. Klotzkin, I. Papautsky, High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. Lab Chip 8, 794–800 (2008)

    Article  Google Scholar 

  8. A. Marcello, D. Sblattero, C. Cioarec, P. Maiuri, P. Melpignano, A deep-blue OLED-based biochip for protein microarray fluorescence detection. Biosens. Bioelectron. 46, 44–47 (2013)

    Article  Google Scholar 

  9. B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, Y. Qiu, A microfluidic device using a green organic light emitting diode as an integrated excitation source. Lab Chip 5, 1041–1047 (2005)

    Article  Google Scholar 

  10. F. Lefèvre, A. Chalifour, L. Yu, V. Chodavarapu, P. Juneau, R. Izquierdo, Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab Chip 12, 787–793 (2012)

    Article  Google Scholar 

  11. R. Liu, R. Ishimatsu, M. Yahiro, C. Adachi, K. Nakano, T. Imato, Photometric flow injection determination of phosphate on a PDMS microchip using an optical detection system assembled with an organic light emitting diode and an organic photodiode. Talanta 132, 96–105 (2014)

    Article  Google Scholar 

  12. Z. Shen, P.E. Burrows, V. Bulović, S.R. Forrest, M.E. Thompson, Three-color, tunable, organic light-emitting devices. Science 276, 2009–2011 (1997)

    Article  Google Scholar 

  13. D.A. Pardo, G.E. Jabbour, N. Peyghambarian, Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12, 1249–1252 (2000)

    Article  Google Scholar 

  14. K. Mori, T. Ning, M. Ichikawa, T. Koyama, Y. Taniguchi, Organic light-emitting devices patterned by screen-printing. Jpn. J. Appl. Phys. 39, L942–L944 (2000)

    Article  Google Scholar 

  15. P. Kopola, M. Tuomikoski, R. Suhonen, A. Maaninen, Gravure printed organic light emitting diodes for lighting applications. Thin Solid Films 517, 5757–5762 (2009)

    Article  Google Scholar 

  16. S. Tekoglu, G. Hernandez-Sosa, E. Kluge, U. Lemmer, N. Mechau, Gravure printed flexible small-molecule organic light emitting diodes. Org. Electron. 14, 3493–3499 (2013)

    Article  Google Scholar 

  17. T.R. Hebner, C.C. Wu, D. Marcy, M.H. Lu, J.C. Sturm, Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72, 519–521 (1998)

    Article  Google Scholar 

  18. Z. Ding, R. Xing, Q. Fu, D. Ma, Y. Han, Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Org. Electron. 12, 703–709 (2011)

    Article  Google Scholar 

  19. S.-C. Chang, Y. Yang, Q. Pei, Polymer solution light-emitting devices. Appl. Phys. Lett. 74, 2081–2083 (1999)

    Article  Google Scholar 

  20. K. Nishimura, Y. Hamada, T. Tsujioka, S. Matsuta, K. Shibata, T. Fuyuki, Solution electrochemiluminescent cell with a high luminance using an ion conductive assistant dopant. Jpn. J Appl. Phys. 40, L1323–L1326 (2001)

    Article  Google Scholar 

  21. T. Nobeshima, T. Morimoto, K. Nakamura, N. Kobayashi, Advantage of an AC-driven electrochemiluminescent cell containing a Ru(bpy)3 2+ complex for quick response and high efficiency. J. Mater. Chem. 20, 10630–10633 (2010)

    Article  Google Scholar 

  22. N. Itoh, Electrochemical light-emitting gel. Materials 3, 3729–3739 (2010)

    Article  Google Scholar 

  23. H.C. Moon, T.P. Lodge, C.D. Frisbie, Solution-processable electrochemiluminescent ion gels for flexible, low-voltage, emissive displays on plastic. J. Am. Chem. Soc. 136, 3705–3712 (2014)

    Article  Google Scholar 

  24. T. Daimon, E. Nihei, Fabrication of organic electrochemiluminescence devices with π-conjugated polymer materials. J Mater. Chem. C. 1, 2826–2833 (2013)

    Article  Google Scholar 

  25. T. Daimon, E. Nihei, Fabrication of a poly(3-octylthiophene-2,5-diyl) electrochemiluminescence device assisted by perylene. Materials 6, 1704–1717 (2013)

    Article  Google Scholar 

  26. M. Honma, T. Hirouchi, T. Nose, Light-emitting liquid-crystal cells with polarization switching function: electrochemiluminescent method. J. Appl. Phys. 106, 014507 (2009)

    Article  Google Scholar 

  27. M. Honma, T. Horiuchi, K. Watanabe, T. Nose, Influence of hole injection layer and work function of cathode on the performance of light-emitting liquid crystal cells with fluorescent dye-doped nematic liquid crystal. Jpn. J. Appl. Phys. 53, 112102 (2014)

    Article  Google Scholar 

  28. T. Kado, M. Takenouchi, S. Okamoto, W. Takashima, K. Kaneto, S. Hayase, Enhanced electrochemiluminescence by use of nanoporous TiO2 electrodes: electrochemiluminescence devices operated with alternating current. Jpn. J. Appl. Phys. 44, 8161–8164 (2005)

    Article  Google Scholar 

  29. S. Sato, T. Ishikawa, K. Yagyu, H. Taniguchi, Emission enhancing characteristics in electrochemiluminescence devices by 9,10-diphenylanthracene dye-highly scattering TiO2 solid-nanoparticle mixture. Appl. Phys. B 98, 523–527 (2010)

    Article  Google Scholar 

  30. R. Okumura, S. Takamatsu, E Iwase, K Matsumoto, I Shimoyama, Solution electrochemiluminescent microfluidic cell for flexible and stretchable display. Proceedings of IEEE International Conference on Micro Electro Mechanical System, Sorrento, 947–950 (2009)

    Google Scholar 

  31. D. Xu, C. Adachi, Organic light-emitting diode with liquid emitting layer. Appl. Phys. Lett. 95, 053304 (2009)

    Article  Google Scholar 

  32. S. Hirata, K. Kubota, H.H. Jung, O. Hirata, K. Goushi, M. Yahiro, C. Adachi, Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer. Adv. Mater. 23, 889–893 (2011)

    Article  Google Scholar 

  33. S. Hirata, H.J. Heo, Y. Shibano, O. Hirata, M. Yahiro, C. Adachi, Improved device lifetime of organic light emitting diodes with an electrochemically stable π-conjugated liquid host in the liquid emitting layer. Jpn. J. Appl. Phys. 51, 041604 (2012)

    Google Scholar 

  34. K. Kubota, S. Hirata, Y. Shibano, O. Hirata, M. Yahiro, C. Adachi, Liquid carbazole substituted with a poly(ethylene oxide) group and its application for liquid organic light-emitting diodes. Chem. Lett. 41, 934–936 (2012)

    Article  Google Scholar 

  35. C.-H. Shim, S. Hirata, J. Oshima, T. Edura, R. Hattori, C. Adachi, Uniform and refreshable liquid electroluminescent device with a back side reservoir. Appl. Phys. Lett. 101, 113302 (2012)

    Article  Google Scholar 

  36. D.M. Hercules, Chemiluminescence resulting from electrochemically generated species. Science 145, 808–809 (1964)

    Article  Google Scholar 

  37. K.S.V. Santhanam, A.J. Bard, Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J. Am. Chem. Soc. 87, 139–140 (1965)

    Article  Google Scholar 

  38. W. Miao, Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 108, 2506–2553 (2008)

    Article  Google Scholar 

  39. H. Niu, R. Yuan, Y. Chai, L. Mao, Y. Yuan, Y. Zhuo, S. Yuan, X. Yang, Electrochemiluminescence of peroxydisulfate enhanced by l-cysteine film for sensitive immunoassay. Biosens. Bioelectron. 26, 3175–3180 (2011)

    Article  Google Scholar 

  40. O.M. Steijger, D.A. Kamminga, A. Brummelhuis, H. Lingeman, Liquid chromatography with luminol-based electrochemiluminescence detection: determination of histamine. J. Chromatogr. A 799, 57–66 (1998)

    Article  Google Scholar 

  41. J. Li, Q. Yan, Y. Gao, H. Ju, Electrogenerated chemiluminescence detection of amino acids based on precolumn derivatization coupled with capillary electrophoresis separation. Anal. Chem. 78, 2694–2699 (2006)

    Article  Google Scholar 

  42. C.A. Marquette, L.J. Blum, Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal. Chim. Acta 381, 1–10 (1999)

    Article  Google Scholar 

  43. B.A. Kamino, B. Mills, C. Reali, M.J. Gretton, M.A. Brook, T.P. Bender, Liquid triarylamines: the scope and limitations of Piers-Rubinsztajn conditions for obtaining triarylamine-siloxane hybrid materials. J. Org. Chem. 77, 1663–1674 (2012)

    Article  Google Scholar 

  44. B.A. Kamino, T.P. Bender, R.A. Klenkle, Hole mobility of a liquid organic semiconductor. J. Phys. Chem. Lett. 3, 1002–1006 (2012)

    Article  Google Scholar 

  45. E.Y. Choi, L. Mager, T.T. Cham, K.D. Dorkenoo, A. Fort, J.W. Wu, A. Barsella, J.-C. Ribierre, Solvent-free fluidic organic dye lasers. Opt. Express 21, 11368–11375 (2013)

    Article  Google Scholar 

  46. J.-C. Ribierre, T. Aoyama, T. Muto, P. André, Hybrid organic–inorganic liquid bistable memory devices. Org. Electron. 12, 1800–1805 (2011)

    Article  Google Scholar 

  47. J. Mai, V.V. Abhyankar, M.E. Piccini, J.P. Olano, R. Willson, A.V. Hatch, Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels. Biosens. Bioelectron. 54, 435–441 (2014)

    Article  Google Scholar 

  48. Y. Li, X. Yan, X. Feng, J. Wang, W. Du, Y. Wang, P. Chen, L. Xiong, B.-F. Liu, Agarose-based microfluidic device for point-of-care concentration and detection of pathogen. Anal. Chem. 86, 10653–10659 (2014)

    Article  Google Scholar 

  49. P.J. Hung, P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee, Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 89, 1–8 (2005)

    Article  Google Scholar 

  50. L.Y. Wu, D.D. Carlo, L.P. Lee, Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed. Microdevices 10, 197–202 (2008)

    Article  Google Scholar 

  51. J. Pihl, M. Karlsson, D.T. Chiu, Microfluidic technologies in drug discovery. Drug Discov. Today 10, 1377–1383 (2005)

    Article  Google Scholar 

  52. J. Ji, Y. Zhao, L. Guo, B. Liu, C. Ji, P. Yang, Interfacial organic synthesis in a simple droplet-based microfluidic system. Lab Chip 12, 1373–1377 (2012)

    Article  Google Scholar 

  53. V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004)

    Article  Google Scholar 

  54. A. Pavesi, F. Piraino, G.B. Fiore, K.M. Farino, M. Moretti, M. Rasponi, How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab Chip 11, 1593–1595 (2011)

    Article  Google Scholar 

  55. C. Priest, P.J. Gruner, E.J. Szill, S.A. Al-Bataineh, J.W. Bradley, J. Ralston, D.A. Steele, R.D. Short, Microplasma patterning of bonded microchannels using high-precision injected electrodes. Lab Chip 11, 541–544 (2011)

    Article  Google Scholar 

  56. T. Kasahara, S. Matsunami, T. Edura, J. Oshima, C. Adachi, S. Shoji, J. Mizuno, Fabrication and performance evaluation of microfluidic organic light emitting diode. Sens. Actuators A 195, 219–223 (2013)

    Article  Google Scholar 

  57. T. Kasahara, S. Matsunami, T. Edura, R. Ishimatsu, J. Oshima, M. Tsuwaki, T. Imato, S. Shoji, C. Adachi, J. Mizuno, Multi-color microfluidic electrochemiluminescence cells. Sens. Actuators A 214, 225–229 (2014)

    Article  Google Scholar 

  58. T. Kasahara, S. Matsunami, T. Edura, R. Ishimatsu, J. Oshima, M. Tsuwaki, T. Imato, S. Shoji, C. Adachi, J. Mizuno, Multi-color microfluidic organic light-emitting diodes based on on-demand emitting layers of pyrene-based liquid organic semiconductors with fluorescent guest dopants. Sens. Actuators B 207, 481–489 (2015)

    Article  Google Scholar 

  59. M. Tsuwaki, T. Kasahara, T. Edura, S. Matsunami, J. Oshima, S. Shoji, C. Adachi, J. Mizuno, Fabrication and characterization of large-area flexible microfluidic organic light-emitting diode with liquid organic semiconductor. Sens. Actuators A 216, 231–236 (2014)

    Article  Google Scholar 

  60. H. Murata, C.D. Merritt, Z.H. Kafafi, Emission mechanism in rubrene-doped molecular organic light-emitting diodes: direct carrier recombination at luminescent centers. IEEE J. Sel. Top. Quantum Electron. 4, 119–124 (1998)

    Article  Google Scholar 

  61. C.-B. Moon, W. Song, M. Meng, N.H. Kim, J.-A. Yoon, W.Y. Kim, R. Wood, P. Mascher, Luminescence of Rubrene and DCJTB molecules in organic light-emitting devices. J. Lumin. 146, 314–320 (2014)

    Article  Google Scholar 

  62. K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, K. Shibata, High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer. Appl. Phys. Lett. 89, 013502 (2006)

    Article  Google Scholar 

  63. K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, K. Shibata, Organic light-emitting devices using polyacene derivatives as a hole-transporting layer. J. Appl. Phys. 100, 044507 (2006)

    Article  Google Scholar 

  64. Y. Zhang, S.R. Forrest, Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes. Phys. Rev. Lett. 108, 267404 (2012)

    Article  Google Scholar 

  65. H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 5, 4016 (2014)

    Article  Google Scholar 

  66. L. Tang, N.Y. Lee, A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab Chip 10, 1274–1280 (2010)

    Article  Google Scholar 

  67. K. Sakuma, J. Mizuno, N. Nagai, N. Unami, S. Shoji, Effects of vacuum ultraviolet surface treatment on the bonding interconnections for flip chip and 3-D integration. IEEE Trans. Electron. Packag. Manuf. 33, 212–220 (2010)

    Article  Google Scholar 

  68. N. Unami, K. Sakuma, J. Mizuno, S. Shoji, Effects of excimer irradiation treatment on thermocompression Au-Au bonding. Jpn. J. Appl. Phys. 49, 06GN12 (2010)

    Article  Google Scholar 

  69. T. Funabashi, J. Mizuno, M. Sato, M. Kitajima, M. Matsuura, S. Shoji, Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors. APL Mater. 1, 032104 (2013)

    Article  Google Scholar 

  70. T. Kasahara, S. Shoji, J. Mizuno, Surface modification of polyethylene terephthalate (PET) by 172-nm excimer lamp. Trans. Jpn. Inst. Electron. Packag. 5, 47–54 (2012)

    Article  Google Scholar 

  71. H. Shinohara, T. Kasahara, S. Shoji, J. Mizuno, Studies on low-temperature direct bonding of VUV/O3-, VUV- and O2 plasma-pre- treated poly-methylmethacrylate. J. Micromech. Microeng. 21, 085028 (2011)

    Article  Google Scholar 

  72. M.A. Wolak, B.-B. Jang, L.C. Palilis, Z.H. Kafafi, Functionalized pentacene derivatives for use as red emitters in organic light-emitting diodes. J. Phys. Chem. B 108, 5492–5499 (2004)

    Article  Google Scholar 

  73. M. Song, J.-W. Kang, D.-H. Kim, J.-D. Kwon, S.-G. Park, S. Nam, S. Jo, S.Y. Ryu, C.S. Kim, Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells. Appl. Phys. Lett. 102, 143303 (2013)

    Article  Google Scholar 

  74. K.A. Luck, T.A. Shastry, S. Loser, G. Ogien, T.J. Marks, M.C. Hersam, Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization. Phys. Chem. Chem. Phys. 15, 20966–20972 (2013)

    Article  Google Scholar 

  75. H. Tang, W. Zhang, P. Geng, Q. Wang, L. Jin, Z. Wu, M. Lou, A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor. Anal. Chim. Acta 562, 190–196 (2006)

    Article  Google Scholar 

  76. O.L. Griffith, S.R. Forrest, Exciton management in organic photovoltaic multidonor energy cascades. Nano Lett. 14, 2353–2358 (2014)

    Article  Google Scholar 

  77. L.C. Picciolo, H. Murata, Z.H. Kafafi, Organic light-emitting devices with saturated red emission using 6,13-diphenylpentacene. Appl. Phys. Lett. 78, 2378–2380 (2001)

    Article  Google Scholar 

  78. J. Mizuno, L. Li, Y. Kawaguchi, K. Tsunozaki, H. Shinohara, S. Shoji, Anti-sticking curing of fluorinated polymers for improvement of mold releasability. J. Photopolym. Sci. Technol. 24, 89–93 (2011)

    Article  Google Scholar 

  79. M. Tsuwaki, J. Mizuno, T. Kasahara, T. Edura, E. Kunisawa, R. Ishimatsu, S. Matsunami, T. Imato, C. Adachi, S. Shoji, Microfluidic electrochemiluminescence (ECL) integrated flow cell for portable fluorescence detection. Proceedings of IEEE Int. Conf. Micro Electro Mechanical Systems, San Francisco, 108–111 (2014)

    Google Scholar 

  80. T. Kasahara, J. Mizuno, S. Matsunami, T. Edura, M. Tsuwaki, J. Oshima, C. Adachi, S. Shoji, Variable multi-color microfluidic organic light emitting device based on mixing of electrochemiluminescence solutions. Proceedings of International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Barcelona, 2596–2560 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) and the International Institute for Carbon Neutral Energy Research (WPI-I2CNER) sponsored by the Japan Ministry of Education, Culture, Sports Science and Technology (MEXT) and Grants-in-Aid for Scientific Basic Research (S) No. 23226010 and for Scientific Basic Research (B) No. 25289241. The authors thank MEXT Nanotechnology Platform Support Project of Waseda University. The authors would like to acknowledge Prof. Chihaya Adachi (Kyushu University), Prof. Shuichi Shoji (Waseda University), Dr. Tomohiko Edura (Kyushu University), Dr. Shigeyuki Matsunami (Kyushu University), Prof. Toshihiko Imato (Kyushu University), Dr. Ryoichi Ishimatsu (Kyushu University), Dr. Juro Oshima (Nissan Chemical Industries, Ltd.), Mr. Osamu Uesugi (Nissan Chemical Industries, Ltd.), and Ms. Miho Tsuwaki (Waseda University) for valuable discussion and insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Mizuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kasahara, T., Mizuno, J. (2015). Microfluidic Organic Light-Emitting Devices Using Liquid Organic Semiconductors. In: Ogawa, S. (eds) Organic Electronics Materials and Devices. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55654-1_9

Download citation

Publish with us

Policies and ethics